Showing 102 open source projects for "gpu"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Grafana: The open and composable observability platform Icon
    Grafana: The open and composable observability platform

    Faster answers, predictable costs, and no lock-in built by the team helping to make observability accessible to anyone.

    Grafana is the open source analytics & monitoring solution for every database.
    Learn More
  • 1
    Flux.jl

    Flux.jl

    Relax! Flux is the ML library that doesn't make you tensor

    ...Cutting-edge models such as Neural ODEs are first class, and Zygote enables overhead-free gradients. GPU kernels can be written directly in Julia via CUDA.jl. Flux is uniquely hackable and any part can be tweaked, from GPU code to custom gradients and layers.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 2
    CatBoost

    CatBoost

    High-performance library for gradient boosting on decision trees

    ...CatBoost offers superior performance over other GBDT libraries on many datasets, and has several superb features. It has best in class prediction speed, supports both numerical and categorical features, has a fast and scalable GPU version, and readily comes with visualization tools. CatBoost was developed by Yandex and is used in various areas including search, self-driving cars, personal assistance, weather prediction and more.
    Downloads: 13 This Week
    Last Update:
    See Project
  • 3
    CV-CUDA

    CV-CUDA

    CV-CUDA™ is an open-source, GPU accelerated library

    CV-CUDA is an open-source project that enables building efficient cloud-scale Artificial Intelligence (AI) imaging and computer vision (CV) applications. It uses graphics processing unit (GPU) acceleration to help developers build highly efficient pre- and post-processing pipelines. CV-CUDA originated as a collaborative effort between NVIDIA and ByteDance.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 4
    OpenCV

    OpenCV

    Open Source Computer Vision Library

    ...It enables developers to build real-time vision applications ranging from facial recognition to object tracking. OpenCV supports a wide range of programming languages including C++, Python, and Java, and is optimized for both CPU and GPU operations.
    Downloads: 14 This Week
    Last Update:
    See Project
  • Total Network Visibility for Network Engineers and IT Managers Icon
    Total Network Visibility for Network Engineers and IT Managers

    Network monitoring and troubleshooting is hard. TotalView makes it easy.

    This means every device on your network, and every interface on every device is automatically analyzed for performance, errors, QoS, and configuration.
    Learn More
  • 5
    SkyPilot

    SkyPilot

    SkyPilot: Run AI and batch jobs on any infra

    SkyPilot is a framework for running AI and batch workloads on any infra, offering unified execution, high cost savings, and high GPU availability. Run AI and batch jobs on any infra (Kubernetes or 12+ clouds). Get unified execution, cost savings, and high GPU availability via a simple interface.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    higgsfield

    higgsfield

    Fault-tolerant, highly scalable GPU orchestration

    Higgsfield is an open-source, fault-tolerant, highly scalable GPU orchestration, and a machine learning framework designed for training models with billions to trillions of parameters, such as Large Language Models (LLMs).
    Downloads: 6 This Week
    Last Update:
    See Project
  • 7
    cuML

    cuML

    RAPIDS Machine Learning Library

    cuML is a suite of libraries that implement machine learning algorithms and mathematical primitives functions that share compatible APIs with other RAPIDS projects. cuML enables data scientists, researchers, and software engineers to run traditional tabular ML tasks on GPUs without going into the details of CUDA programming. In most cases, cuML's Python API matches the API from scikit-learn. For large datasets, these GPU-based implementations can complete 10-50x faster than their CPU equivalents. For details on performance, see the cuML Benchmarks Notebook.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 8
    Keras

    Keras

    Python-based neural networks API

    Python Deep Learning library
    Downloads: 10 This Week
    Last Update:
    See Project
  • 9
    PyTorch

    PyTorch

    Open source machine learning framework

    PyTorch is a Python package that offers Tensor computation (like NumPy) with strong GPU acceleration and deep neural networks built on tape-based autograd system. This project allows for fast, flexible experimentation and efficient production. PyTorch consists of torch (Tensor library), torch.autograd (tape-based automatic differentiation library), torch.jit (a compilation stack [TorchScript]), torch.nn (neural networks library), torch.multiprocessing (Python multiprocessing), and torch.utils (DataLoader and other utility functions). ...
    Downloads: 101 This Week
    Last Update:
    See Project
  • Desktop and Mobile Device Management Software Icon
    Desktop and Mobile Device Management Software

    It's a modern take on desktop management that can be scaled as per organizational needs.

    Desktop Central is a unified endpoint management (UEM) solution that helps in managing servers, laptops, desktops, smartphones, and tablets from a central location.
    Learn More
  • 10
    SageMaker Python SDK

    SageMaker Python SDK

    Training and deploying machine learning models on Amazon SageMaker

    ...You can also train and deploy models with Amazon algorithms, which are scalable implementations of core machine learning algorithms that are optimized for SageMaker and GPU training. If you have your own algorithms built into SageMaker-compatible Docker containers, you can train and host models using these as well.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 11
    DALI

    DALI

    A GPU-accelerated library containing highly optimized building blocks

    ...These data processing pipelines, which are currently executed on the CPU, have become a bottleneck, limiting the performance and scalability of training and inference. DALI addresses the problem of the CPU bottleneck by offloading data preprocessing to the GPU. Additionally, DALI relies on its own execution engine, built to maximize the throughput of the input pipeline.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12

    LightGBM

    Gradient boosting framework based on decision tree algorithms

    ...Parallel experiments have shown that LightGBM can attain linear speed-up through multiple machines for training in specific settings, all while consuming less memory. LightGBM supports parallel and GPU learning, and can handle large-scale data. It’s become widely-used for ranking, classification and many other machine learning tasks.
    Downloads: 7 This Week
    Last Update:
    See Project
  • 13
    DGL

    DGL

    Python package built to ease deep learning on graph

    ...We also want to make the combination of graph based modules and tensor based modules (PyTorch or MXNet) as smooth as possible. DGL provides a powerful graph object that can reside on either CPU or GPU. It bundles structural data as well as features for a better control. We provide a variety of functions for computing with graph objects including efficient and customizable message passing primitives for Graph Neural Networks.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    pomegranate

    pomegranate

    Fast, flexible and easy to use probabilistic modelling in Python

    pomegranate is a library for probabilistic modeling defined by its modular implementation and treatment of all models as the probability distributions they are. The modular implementation allows one to easily drop normal distributions into a mixture model to create a Gaussian mixture model just as easily as dropping a gamma and a Poisson distribution into a mixture model to create a heterogeneous mixture. But that's not all! Because each model is treated as a probability distribution,...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 15
    Model Zoo

    Model Zoo

    Please do not feed the models

    ...Each model is organized into its own project folder with pinned package versions, ensuring reproducibility and stability. The examples serve both as educational tools for learning Flux and as practical starting points for building new models. GPU acceleration is supported for most models through CUDA integration, enabling efficient training on compatible hardware. With community contributions encouraged, the Model Zoo acts as a hub for sharing and exploring diverse machine learning applications in Julia.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    NVIDIA NeMo

    NVIDIA NeMo

    Toolkit for conversational AI

    ...Every module can easily be customized, extended, and composed to create new conversational AI model architectures. Conversational AI architectures are typically large and require a lot of data and compute for training. NeMo uses PyTorch Lightning for easy and performant multi-GPU/multi-node mixed-precision training. Supported models: Jasper, QuartzNet, CitriNet, Conformer-CTC, Conformer-Transducer, Squeezeformer-CTC, Squeezeformer-Transducer, ContextNet, LSTM-Transducer (RNNT), LSTM-CTC. NGC collection of pre-trained speech processing models.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 17
    Pytorch-toolbelt

    Pytorch-toolbelt

    PyTorch extensions for fast R&D prototyping and Kaggle farming

    A pytorch-toolbelt is a Python library with a set of bells and whistles for PyTorch for fast R&D prototyping and Kaggle farming. Easy model building using flexible encoder-decoder architecture. Modules: CoordConv, SCSE, Hypercolumn, Depthwise separable convolution and more. GPU-friendly test-time augmentation TTA for segmentation and classification. GPU-friendly inference on huge (5000x5000) images. Every-day common routines (fix/restore random seed, filesystem utils, metrics). Losses: BinaryFocalLoss, Focal, ReducedFocal, Lovasz, Jaccard and Dice losses, Wing Loss and more. Extras for Catalyst library (Visualization of batch predictions, additional metrics). ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 18
    SSD in PyTorch 1.0

    SSD in PyTorch 1.0

    High quality, fast, modular reference implementation of SSD in PyTorch

    ...The implementation is heavily influenced by the projects ssd.pytorch, pytorch-ssd and maskrcnn-benchmark. This repository aims to be the code base for research based on SSD. Multi-GPU training and inference: We use DistributedDataParallel, you can train or test with arbitrary GPU(s), the training schema will change accordingly. Add your own modules without pain. We abstract backbone, Detector, BoxHead, BoxPredictor, etc. You can replace every component with your own code without changing the code base. For example, You can add EfficientNet as the backbone, just add efficient_net.py (ALREADY ADDED) and register it, specific it in the config file, It's done! ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    emgucv

    emgucv

    Cross platform .Net wrapper to the OpenCV image processing library

    Emgu CV is a cross platform .Net wrapper to the OpenCV image processing library. Allowing OpenCV functions to be called from .NET compatible languages. The wrapper can be compiled by Visual Studio and Unity, it can run on Windows, Linux, Mac OS, iOS and Android.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 20
    Lepton AI

    Lepton AI

    A Pythonic framework to simplify AI service building

    A Pythonic framework to simplify AI service building. Cutting-edge AI inference and training, unmatched cloud-native experience, and top-tier GPU infrastructure. Ensure 99.9% uptime with comprehensive health checks and automatic repairs.
    Downloads: 9 This Week
    Last Update:
    See Project
  • 21
    Colossal-AI

    Colossal-AI

    Making large AI models cheaper, faster and more accessible

    The Transformer architecture has improved the performance of deep learning models in domains such as Computer Vision and Natural Language Processing. Together with better performance come larger model sizes. This imposes challenges to the memory wall of the current accelerator hardware such as GPU. It is never ideal to train large models such as Vision Transformer, BERT, and GPT on a single GPU or a single machine. There is an urgent demand to train models in a distributed environment. However, distributed training, especially model parallelism, often requires domain expertise in computer systems and architecture. It remains a challenge for AI researchers to implement complex distributed training solutions for their models. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    DiffEqFlux.jl

    DiffEqFlux.jl

    Pre-built implicit layer architectures with O(1) backprop, GPUs

    DiffEqFlux.jl is a Julia library that combines differential equations with neural networks, enabling the creation of neural differential equations (neural ODEs), universal differential equations, and physics-informed learning models. It serves as a bridge between the DifferentialEquations.jl and Flux.jl libraries, allowing for end-to-end differentiable simulations and model training in scientific machine learning. DiffEqFlux.jl is widely used for modeling dynamical systems with learnable...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 23
    AlphaZero.jl

    AlphaZero.jl

    A generic, simple and fast implementation of Deepmind's AlphaZero

    Beyond its much publicized success in attaining superhuman level at games such as Chess and Go, DeepMind's AlphaZero algorithm illustrates a more general methodology of combining learning and search to explore large combinatorial spaces effectively. We believe that this methodology can have exciting applications in many different research areas. Because AlphaZero is resource-hungry, successful open-source implementations (such as Leela Zero) are written in low-level languages (such as C++)...
    Downloads: 52 This Week
    Last Update:
    See Project
  • 24
    TorchAudio

    TorchAudio

    Data manipulation and transformation for audio signal processing

    The aim of torchaudio is to apply PyTorch to the audio domain. By supporting PyTorch, torchaudio follows the same philosophy of providing strong GPU acceleration, having a focus on trainable features through the autograd system, and having consistent style (tensor names and dimension names). Therefore, it is primarily a machine learning library and not a general signal processing library. The benefits of PyTorch can be seen in torchaudio through having all the computations be through PyTorch operations which makes it easy to use and feel like a natural extension.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 25
    NeuralPDE.jl

    NeuralPDE.jl

    Physics-Informed Neural Networks (PINN) Solvers

    NeuralPDE.jl is a Julia library for solving partial differential equations (PDEs) using physics-informed neural networks and scientific machine learning. Built on top of the SciML ecosystem, it provides a flexible and composable interface for defining PDEs and training neural networks to approximate their solutions. NeuralPDE.jl enables hybrid modeling, data-driven discovery, and fast PDE solvers in high dimensions, making it suitable for scientific research and engineering applications.
    Downloads: 2 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • 3
  • 4
  • 5
  • Next