Showing 21 open source projects for "base"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Automate contact and company data extraction Icon
    Automate contact and company data extraction

    Build lead generation pipelines that pull emails, phone numbers, and company details from directories, maps, social platforms. Full API access.

    Generate leads at scale without building or maintaining scrapers. Use 10,000+ ready-made tools that handle authentication, pagination, and anti-bot protection. Pull data from business directories, social profiles, and public sources, then export to your CRM or database via API. Schedule recurring extractions, enrich existing datasets, and integrate with your workflows.
    Explore Apify Store
  • 1
    PyTorch Forecasting

    PyTorch Forecasting

    Time series forecasting with PyTorch

    ...The goal is to provide a high-level API with maximum flexibility for professionals and reasonable defaults for beginners. A time series dataset class that abstracts handling variable transformations, missing values, randomized subsampling, multiple history lengths, etc. A base model class that provides basic training of time series models along with logging in tensorboard and generic visualizations such actual vs predictions and dependency plots. Multiple neural network architectures for timeseries forecasting that have been enhanced for real-world deployment and come with in-built interpretation capabilities. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 2
    NGBoost

    NGBoost

    Natural Gradient Boosting for Probabilistic Prediction

    ngboost is a Python library that implements Natural Gradient Boosting, as described in "NGBoost: Natural Gradient Boosting for Probabilistic Prediction". It is built on top of Scikit-Learn and is designed to be scalable and modular with respect to the choice of proper scoring rule, distribution, and base learner. A didactic introduction to the methodology underlying NGBoost is available in this slide deck.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 3
    SSD in PyTorch 1.0

    SSD in PyTorch 1.0

    High quality, fast, modular reference implementation of SSD in PyTorch

    This repository implements SSD (Single Shot MultiBox Detector). The implementation is heavily influenced by the projects ssd.pytorch, pytorch-ssd and maskrcnn-benchmark. This repository aims to be the code base for research based on SSD. Multi-GPU training and inference: We use DistributedDataParallel, you can train or test with arbitrary GPU(s), the training schema will change accordingly. Add your own modules without pain. We abstract backbone, Detector, BoxHead, BoxPredictor, etc. You can replace every component with your own code without changing the code base. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    AutoKeras

    AutoKeras

    AutoML library for deep learning

    ...AutoKeras supports several tasks with extremely simple interface. AutoKeras would search for the best detailed configuration for you. Moreover, you can override the base classes to create your own block.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Run applications fast and securely in a fully managed environment Icon
    Run applications fast and securely in a fully managed environment

    Cloud Run is a fully-managed compute platform that lets you run your code in a container directly on top of scalable infrastructure.

    Run frontend and backend services, batch jobs, deploy websites and applications, and queue processing workloads without the need to manage infrastructure.
    Try for free
  • 5
    Lightweight' GAN

    Lightweight' GAN

    Implementation of 'lightweight' GAN, proposed in ICLR 2021

    Implementation of 'lightweight' GAN proposed in ICLR 2021, in Pytorch. The main contribution of the paper is a skip-layer excitation in the generator, paired with autoencoding self-supervised learning in the discriminator. Quoting the one-line summary "converge on single gpu with few hours' training, on 1024 resolution sub-hundred images". Augmentation is essential for Lightweight GAN to work effectively in a low data setting. You can test and see how your images will be augmented before...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 6
    Stable Baselines3

    Stable Baselines3

    PyTorch version of Stable Baselines

    ...These algorithms will make it easier for the research community and industry to replicate, refine, and identify new ideas, and will create good baselines to build projects on top of. We expect these tools will be used as a base around which new ideas can be added, and as a tool for comparing a new approach against existing ones. We also hope that the simplicity of these tools will allow beginners to experiment with a more advanced toolset, without being buried in implementation details.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    Conscious Artificial Intelligence

    Conscious Artificial Intelligence

    It's possible for machines to become self-aware.

    ...This project has 2 subprojects: Object Pascal based CAI NEURAL API - https://github.com/joaopauloschuler/neural-api Python based K-CAI NEURAL API - https://github.com/joaopauloschuler/k-neural-api A video from the first prototype has been made: http://www.youtube.com/watch?v=qH-IQgYy9zg Above video shows a popperian agent collecting mining ore from 3 mining sites and bringing to the base. At the time the agent is born, it doesn't know how to walk nor it knows that it feels pleasure by mining. He has tact only (blind agent). The video shows learning, planning, executing and plan optimization.
    Downloads: 6 This Week
    Last Update:
    See Project
  • 8
    MMAction2

    MMAction2

    OpenMMLab's Next Generation Video Understanding Toolbox and Benchmark

    OpenMMLab's next generation video understanding toolbox and benchmark. MMAction2 is an open-source toolbox for video understanding based on PyTorch. It is a part of the OpenMMLab project. Modular design: We decompose a video understanding framework into different components. One can easily construct a customized video understanding framework by combining different modules. Support four major video understanding tasks: MMAction2 implements various algorithms for multiple video understanding...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    TTS

    TTS

    Deep learning for text to speech

    ...Tools to curate Text2Speech datasets underdataset_analysis. Demo server for model testing. Notebooks for extensive model benchmarking. Modular (but not too much) code base enabling easy testing for new ideas. Text2Spec models (Tacotron, Tacotron2, Glow-TTS, SpeedySpeech). Speaker Encoder to compute speaker embeddings efficiently. Vocoder models (MelGAN, Multiband-MelGAN, GAN-TTS, ParallelWaveGAN, WaveGrad, WaveRNN). If you are only interested in synthesizing speech with the released TTS models, installing from PyPI is the easiest option.
    Downloads: 7 This Week
    Last Update:
    See Project
  • Bare Metal Cloud Servers Icon
    Bare Metal Cloud Servers

    Cloud-native dedicated servers powered by automation

    phoenixNAP is a global IaaS provider delivering world-class infrastructure solutions from strategic edge locations in the U.S., Europe, Asia-Pacific, Australia, and Latin America.
    Learn More
  • 10
    Stable Baselines

    Stable Baselines

    A fork of OpenAI Baselines, implementations of reinforcement learning

    ...These algorithms will make it easier for the research community and industry to replicate, refine, and identify new ideas, and will create good baselines to build projects on top of. We expect these tools will be used as a base around which new ideas can be added, and as a tool for comparing a new approach against existing ones. We also hope that the simplicity of these tools will allow beginners to experiment with a more advanced toolset, without being buried in implementation details.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    Activity Recognition

    Activity Recognition

    Resources about activity recognition

    This repository is a curated collection of resources, papers, code, and summaries relating to human activity recognition/behavior recognition. It is not a single integrated software package but rather a knowledge base organizing feature extraction methods, deep learning approaches, transfer learning strategies, datasets, and representative research in behavior recognition. The repository includes links to code in MATLAB, Python, summaries of algorithms, datasets, and relevant research papers. Feature extraction method summaries (e.g. motion, sensor, vision). ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    SLING

    SLING

    A natural language frame semantics parser

    The aim of the SLING project is to learn to read and understand Wikipedia articles in many languages for the purpose of knowledge base completion, e.g. adding facts mentioned in Wikipedia (and other sources) to the Wikidata knowledge base. We use frame semantics as a common representation for both knowledge representation and document annotation. The SLING parser can be trained to produce frame semantic representations of text directly without any explicit intervening linguistic representation. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    DeepLearn

    DeepLearn

    Implementation of research papers on Deep Learning+ NLP+ CV in Python

    Welcome to DeepLearn. This repository contains an implementation of the following research papers on NLP, CV, ML, and deep learning. The required dependencies are mentioned in requirement.txt. I will also use dl-text modules for preparing the datasets. If you haven't use it, please do have a quick look at it. CV, transfer learning, representation learning.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14

    OWL Machine Learning

    Machine learning algorithm using OWL

    ...This project makes use of ontologies to automatically generate features for the ML algorithms. The features are generated by combining the concepts and relationships that are already in the knowledge base, expressed in form of ontology.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    ... - MECore is a shell-based system that allows the user to create propositional knowledge bases, to perform a variety of belief change operations, and to query a knowledge base with respect to the principle of optimum entropy. - Log4KR is a library providing data structures to represent knowledge bases in various logic formalisms (propositional, relational, conditional, probabilistic, ...) and providing algorithms to perform reasoning operations
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    node-opencv

    node-opencv

    OpenCV Bindings for node.js

    OpenCV bindings for Node.js. OpenCV is the defacto computer vision library - by interfacing with it natively in node, we get powerful real time vision in js. People are using node-opencv to fly control quadrocoptors, detect faces from webcam images and annotate video streams. If you're using it for something cool, I'd love to hear about it! You'll need OpenCV 2.3.1 or newer installed before installing node-opencv. You can use opencv to read in image files. Supported formats are in the OpenCV...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17

    GA-EoC

    GeneticAlgorithm-based search for Heterogeneous Ensemble Combinations

    ...Then, we apply the (alpha,beta)-k feature set method to select a better subset of features and combine their outputs to get a consolidated feature set for classifier training. To enhance classification performances, we propose an ensemble of classifiers that combine the classification outputs of base classifiers using the simplest and largely used majority voting approach. Instead of creating the ensemble using all base classifiers, we have implemented a genetic algorithm (GA) to search for the best combination from heterogeneous base classifiers. The classification performances achieved by the proposed method method on the chosen datasets are promising.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 18

    DE-HEoC

    DE-based Weight Optimisation for Heterogeneous Ensemble

    ...The voting weights of base classifiers are optimized for the heterogeneous ensemble of classifiers aiming to attain better generalization performances on testing datasets.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    GUAJE FUZZY

    GUAJE FUZZY

    Free software for generating understandable and accurate fuzzy systems

    ...GUAJE lets the user define expert variables and rules, but also provide supervised and fully automatic learning capabilities. Both types of knowledge, expert and induced, are integrated under the expert supervision, ensuring interpretability, simplicity and consistency of the knowledge base along the whole process. Notice that, GUAJE is is an upgraded version of the free software called KBCT (Knowledge Base Configuration Tool).
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20

    ProximityForest

    Efficient Approximate Nearest Neighbors for General Metric Spaces

    A proximity forest is a data structure that allows for efficient computation of approximate nearest neighbors of arbitrary data elements in a metric space. See: O'Hara and Draper, "Are You Using the Right Approximate Nearest Neighbor Algorithm?", WACV 2013 (best student paper award). One application of a ProximityForest is given in the following CVPR publication: Stephen O'Hara and Bruce A. Draper, "Scalable Action Recognition with a Subspace Forest," IEEE Conference on Computer...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    The name stands for ensemble learning framework. It is a collection of machine learning algorithms for classification and regression with the possibility of connecting them together via ensemble learning. It is written in C++.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next