Showing 515 open source projects for "raspberry-gpio-python"

View related business solutions
  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    Build gen AI apps with an all-in-one modern database: MongoDB Atlas

    MongoDB Atlas provides built-in vector search and a flexible document model so developers can build, scale, and run gen AI apps without stitching together multiple databases. From LLM integration to semantic search, Atlas simplifies your AI architecture—and it’s free to get started.
    Start Free
  • Photo and Video Editing APIs and SDKs Icon
    Photo and Video Editing APIs and SDKs

    Trusted by 150 million+ creators and businesses globally

    Unlock Picsart's full editing suite by embedding our Editor SDK directly into your platform. Offer your users the power of a full design suite without leaving your site.
    Learn More
  • 1
    fastdup

    fastdup

    An unsupervised and free tool for image and video dataset analysis

    fastdup is a powerful free tool designed to rapidly extract valuable insights from your image & video datasets. Assisting you to increase your dataset images & labels quality and reduce your data operations costs at an unparalleled scale.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    MLPerf

    MLPerf

    Reference implementations of MLPerf™ training benchmarks

    This is a repository of reference implementations for the MLPerf training benchmarks. These implementations are valid as starting points for benchmark implementations but are not fully optimized and are not intended to be used for "real" performance measurements of software frameworks or hardware. Benchmarking the performance of training ML models on a wide variety of use cases, software, and hardware drives AI performance across the tech industry. The MLPerf Training working group draws on...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    Optax

    Optax

    Optax is a gradient processing and optimization library for JAX

    Optax is a gradient processing and optimization library for JAX. It is designed to facilitate research by providing building blocks that can be recombined in custom ways in order to optimize parametric models such as, but not limited to, deep neural networks. We favor focusing on small composable building blocks that can be effectively combined into custom solutions. Others may build upon these basic components in more complicated abstractions. Whenever reasonable, implementations prioritize...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    Advanced Solutions Lab

    Advanced Solutions Lab

    This repos contains notebooks for the Advanced Solutions Lab

    This repository contains Jupyter notebooks meant to be run on Vertex AI. This is maintained by Google Cloud’s Advanced Solutions Lab (ASL) team. Vertex AI is the next-generation AI Platform on the Google Cloud Platform. The material covered in this repo will take a software engineer with no exposure to machine learning to an advanced level.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Sales CRM and Pipeline Management Software | Pipedrive Icon
    Sales CRM and Pipeline Management Software | Pipedrive

    The easy and effective CRM for closing deals

    Pipedrive’s simple interface empowers salespeople to streamline workflows and unite sales tasks in one workspace. Unlock instant sales insights with Pipedrive’s visual sales pipeline and fine-tune your strategy with robust reporting features and a personalized AI Sales Assistant.
    Try it for free
  • 5
    Autodistill

    Autodistill

    Images to inference with no labeling

    Autodistill uses big, slower foundation models to train small, faster supervised models. Using autodistill, you can go from unlabeled images to inference on a custom model running at the edge with no human intervention in between. You can use Autodistill on your own hardware, or use the Roboflow hosted version of Autodistill to label images in the cloud.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    Nixtla ML

    Nixtla ML

    TimeGPT-1: production ready pre-trained Time Series Foundation Model

    TimeGPT is a production ready, generative pretrained transformer for time series. It's capable of accurately predicting various domains such as retail, electricity, finance, and IoT with just a few lines of code. Whether you're a bank forecasting market trends or a startup predicting product demand, TimeGPT democratizes access to cutting-edge predictive insights, eliminating the need for a dedicated team of machine learning engineers. A generative model for time series. TimeGPT is capable of...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    Chronos Forecasting

    Chronos Forecasting

    Pretrained (Language) Models for Probabilistic Time Series Forecasting

    Chronos is a family of pretrained time series forecasting models based on language model architectures. A time series is transformed into a sequence of tokens via scaling and quantization, and a language model is trained on these tokens using the cross-entropy loss. Once trained, probabilistic forecasts are obtained by sampling multiple future trajectories given the historical context. Chronos models have been trained on a large corpus of publicly available time series data, as well as...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    Haiku Sonnet for JAX

    Haiku Sonnet for JAX

    JAX-based neural network library

    ..., and a simple function transformation, hk.transform. hk.Modules are Python objects that hold references to their own parameters, other modules, and methods that apply functions on user inputs. hk.transform turns functions that use these object-oriented, functionally "impure" modules into pure functions that can be used with jax.jit, jax.grad, jax.pmap, etc.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    Sacred

    Sacred

    Sacred is a tool to help you configure, andorganize IDSIA experiments

    Sacred is a tool to help you configure, organize, log and reproduce experiments. It is designed to do all the tedious overhead work that you need to do around your actual experiment. A very convenient way of the local variables in a function to define the parameters your experiment uses. You can access all parameters of your configuration from every function. They are automatically injected by name. You get a powerful command-line interface for each experiment that you can use to change...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Test your software product anywhere in the world Icon
    Test your software product anywhere in the world

    Get feedback from real people across 190+ countries with the devices, environments, and payment instruments you need for your perfect test.

    Global App Testing is a managed pool of freelancers used by Google, Meta, Microsoft, and other world-beating software companies.
    Try us today.
  • 10
    Core ML Tools

    Core ML Tools

    Core ML tools contain supporting tools for Core ML model conversion

    Use Core ML Tools (coremltools) to convert machine learning models from third-party libraries to the Core ML format. This Python package contains the supporting tools for converting models from training libraries. Core ML is an Apple framework to integrate machine learning models into your app. Core ML provides a unified representation for all models. Your app uses Core ML APIs and user data to make predictions, and to fine-tune models, all on the user’s device. Core ML optimizes on-device...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    Aim

    Aim

    An easy-to-use & supercharged open-source experiment tracker

    Aim logs all your AI metadata (experiments, prompts, etc) enabling a UI to compare & observe them and SDK to query them programmatically. The Aim standard package comes with all integrations. If you'd like to modify the integration and make it custom, create a new integration package and share with others. Aim is an open-source, self-hosted AI Metadata tracking tool designed to handle 100,000s of tracked metadata sequences. The two most famous AI metadata applications are: experiment...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    SkyPilot

    SkyPilot

    SkyPilot: Run AI and batch jobs on any infra

    SkyPilot is a framework for running AI and batch workloads on any infra, offering unified execution, high cost savings, and high GPU availability. Run AI and batch jobs on any infra (Kubernetes or 12+ clouds). Get unified execution, cost savings, and high GPU availability via a simple interface.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    Llama Recipes

    Llama Recipes

    Scripts for fine-tuning Meta Llama3 with composable FSDP & PEFT method

    The 'llama-recipes' repository is a companion to the Meta Llama models. We support the latest version, Llama 3.1, in this repository. The goal is to provide a scalable library for fine-tuning Meta Llama models, along with some example scripts and notebooks to quickly get started with using the models in a variety of use-cases, including fine-tuning for domain adaptation and building LLM-based applications with Llama and other tools in the LLM ecosystem. The examples here showcase how to run...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    flair

    flair

    A very simple framework for state-of-the-art NLP

    A very simple framework for state-of-the-art NLP. Developed by Humboldt University of Berlin and friends. A powerful NLP library. Flair allows you to apply our state-of-the-art natural language processing (NLP) models to your text, such as named entity recognition (NER), sentiment analysis, part-of-speech tagging (PoS), special support for biomedical texts, sense disambiguation and classification, with support for a rapidly growing number of languages. A text embedding library. Flair has...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    OpenBB

    OpenBB

    Investment Research for Everyone, Everywhere

    Customize and speed up your analysis, bring your own data, and create instant reports to gain a competitive edge. Whether it’s a CSV file, a private endpoint, an RSS feed, or even embed an SEC filing directly. Chat with financial data using large language models. Don’t waste time reading, create summaries in seconds and ask how that impacts investments. Create your dashboard with your favorite widgets. Create charts directly from raw data in seconds. Create charts directly from raw data in...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    MLRun

    MLRun

    Machine Learning automation and tracking

    MLRun is an open MLOps framework for quickly building and managing continuous ML and generative AI applications across their lifecycle. MLRun integrates into your development and CI/CD environment and automates the delivery of production data, ML pipelines, and online applications, significantly reducing engineering efforts, time to production, and computation resources. MLRun breaks the silos between data, ML, software, and DevOps/MLOps teams, enabling collaboration and fast continuous...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    AutoMLOps

    AutoMLOps

    Build MLOps Pipelines in Minutes

    AutoMLOps is a service that generates, provisions, and deploys CI/CD integrated MLOps pipelines, bridging the gap between Data Science and DevOps. AutoMLOps provides a repeatable process that dramatically reduces the time required to build MLOps pipelines. The service generates a containerized MLOps codebase, provides infrastructure-as-code to provision and maintain the underlying MLOps infra, and provides deployment functionalities to trigger and run MLOps pipelines. AutoMLOps gives...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    AtomAI

    AtomAI

    Deep and Machine Learning for Microscopy

    AtomAI is a Pytorch-based package for deep and machine-learning analysis of microscopy data that doesn't require any advanced knowledge of Python or machine learning. The intended audience is domain scientists with a basic understanding of how to use NumPy and Matplotlib. It was developed by Maxim Ziatdinov at Oak Ridge National Lab. The purpose of the AtomAI is to provide an environment that bridges the instrument-specific libraries and general physical analysis by enabling the seamless...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    dstack

    dstack

    Open-source tool designed to enhance the efficiency of workloads

    dstack is an open-source tool designed to enhance the efficiency of running ML workloads in any cloud (AWS, GCP, Azure, Lambda, etc). It streamlines development and deployment, reduces cloud costs, and frees users from vendor lock-in.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    OpenVINO Training Extensions

    OpenVINO Training Extensions

    Trainable models and NN optimization tools

    OpenVINO™ Training Extensions provide a convenient environment to train Deep Learning models and convert them using the OpenVINO™ toolkit for optimized inference. When ote_cli is installed in the virtual environment, you can use the ote command line interface to perform various actions for templates related to the chosen task type, such as running, training, evaluating, exporting, etc. ote train trains a model (a particular model template) on a dataset and saves results in two files. ote...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    NannyML

    NannyML

    Detecting silent model failure. NannyML estimates performance

    NannyML is an open-source python library that allows you to estimate post-deployment model performance (without access to targets), detect data drift, and intelligently link data drift alerts back to changes in model performance. Built for data scientists, NannyML has an easy-to-use interface, and interactive visualizations, is completely model-agnostic, and currently supports all tabular classification use cases. NannyML closes the loop with performance monitoring and post deployment data...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    Hivemind

    Hivemind

    Decentralized deep learning in PyTorch. Built to train models

    Hivemind is a PyTorch library for decentralized deep learning across the Internet. Its intended usage is training one large model on hundreds of computers from different universities, companies, and volunteers. Distributed training without a master node: Distributed Hash Table allows connecting computers in a decentralized network. Fault-tolerant backpropagation: forward and backward passes succeed even if some nodes are unresponsive or take too long to respond. Decentralized parameter...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    Denoising Diffusion Probabilistic Model

    Denoising Diffusion Probabilistic Model

    Implementation of Denoising Diffusion Probabilistic Model in Pytorch

    Implementation of Denoising Diffusion Probabilistic Model in Pytorch. It is a new approach to generative modeling that may have the potential to rival GANs. It uses denoising score matching to estimate the gradient of the data distribution, followed by Langevin sampling to sample from the true distribution. If you simply want to pass in a folder name and the desired image dimensions, you can use the Trainer class to easily train a model.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    Pytorch-toolbelt

    Pytorch-toolbelt

    PyTorch extensions for fast R&D prototyping and Kaggle farming

    A pytorch-toolbelt is a Python library with a set of bells and whistles for PyTorch for fast R&D prototyping and Kaggle farming. Easy model building using flexible encoder-decoder architecture. Modules: CoordConv, SCSE, Hypercolumn, Depthwise separable convolution and more. GPU-friendly test-time augmentation TTA for segmentation and classification. GPU-friendly inference on huge (5000x5000) images. Every-day common routines (fix/restore random seed, filesystem utils, metrics). Losses...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    TensorFlow Addons

    TensorFlow Addons

    Useful extra functionality for TensorFlow 2.x maintained by SIG-addons

    TensorFlow Addons is a repository of contributions that conform to well-established API patterns but implement new functionality not available in core TensorFlow. TensorFlow natively supports a large number of operators, layers, metrics, losses, and optimizers. However, in a fast-moving field like ML, there are many interesting new developments that cannot be integrated into core TensorFlow (because their broad applicability is not yet clear, or it is mostly used by a smaller subset of the...
    Downloads: 0 This Week
    Last Update:
    See Project
Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.