Showing 129 open source projects for "processing"

View related business solutions
  • Atera all-in-one platform IT management software with AI agents Icon
    Atera all-in-one platform IT management software with AI agents

    Ideal for internal IT departments or managed service providers (MSPs)

    Atera’s AI agents don’t just assist, they act. From detection to resolution, they handle incidents and requests instantly, taking your IT management from automated to autonomous.
    Learn More
  • AI-generated apps that pass security review Icon
    AI-generated apps that pass security review

    Stop waiting on engineering. Build production-ready internal tools with AI—on your company data, in your cloud.

    Retool lets you generate dashboards, admin panels, and workflows directly on your data. Type something like “Build me a revenue dashboard on my Stripe data” and get a working app with security, permissions, and compliance built in from day one. Whether on our cloud or self-hosted, create the internal software your team needs without compromising enterprise standards or control.
    Try Retool free
  • 1
    PORORO

    PORORO

    Platform of neural models for natural language processing

    pororo performs Natural Language Processing and Speech-related tasks. It is easy to solve various subtasks in the natural language and speech processing field by simply passing the task name. Recognized speech sentences using the trained model. Currently English, Korean and Chinese support. Get vector or find similar words and entities from pretrained model using Wikipedia.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    Surface Defect Detection Dataset Papers

    Surface Defect Detection Dataset Papers

    Constantly summarizing open source dataset and critical papers

    At present, surface defect equipment based on machine vision has widely replaced artificial visual inspection in various industrial fields, including 3C, automobiles, home appliances, machinery manufacturing, semiconductors and electronics, chemical, pharmaceutical, aerospace, light industry and other industries. Traditional surface defect detection methods based on machine vision often use conventional image processing algorithms or artificially designed features plus classifiers. Generally speaking, imaging schemes are usually designed by using the different properties of the inspected surface or defects. A reasonable imaging scheme helps to obtain images with uniform illumination and clearly reflect the surface defects of the object. In recent years, many defect detection methods based on deep learning have also been widely used in various industrial scenarios.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    NLP Architect

    NLP Architect

    A model library for exploring state-of-the-art deep learning

    ...The library contains NLP/NLU-related models per task, different neural network topologies (which are used in models), procedures for simplifying workflows in the library, pre-defined data processors and dataset loaders and misc utilities. The library is designed to be a tool for model development: data pre-processing, build model, train, validate, infer, save or load a model.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    fastNLP

    fastNLP

    fastNLP: A Modularized and Extensible NLP Framework

    fastNLP is a lightweight framework for natural language processing (NLP), the goal is to quickly implement NLP tasks and build complex models. A unified Tabular data container simplifies the data preprocessing process. Built-in Loader and Pipe for multiple datasets, eliminating the need for preprocessing code. Various convenient NLP tools, such as Embedding loading (including ELMo and BERT), intermediate data cache, etc..
    Downloads: 0 This Week
    Last Update:
    See Project
  • Outgrown Windows Task Scheduler? Icon
    Outgrown Windows Task Scheduler?

    Free diagnostic identifies where your workflow is breaking down—with instant analysis of your scheduling environment.

    Windows Task Scheduler wasn't built for complex, cross-platform automation. Get a free diagnostic that shows exactly where things are failing and provides remediation recommendations. Interactive HTML report delivered in minutes.
    Download Free Tool
  • 5
    GIMP ML

    GIMP ML

    AI for GNU Image Manipulation Program

    ...GIMP-ML relies on standard Python packages such as numpy, scikit-image, pillow, pytorch, open-cv, scipy. In addition, GIMP-ML also aims to bring the benefits of using deep learning networks used for computer vision tasks to routine image processing workflows.
    Downloads: 19 This Week
    Last Update:
    See Project
  • 6
    Delta ML

    Delta ML

    Deep learning based natural language and speech processing platform

    DELTA is a deep learning-based end-to-end natural language and speech processing platform. DELTA aims to provide easy and fast experiences for using, deploying, and developing natural language processing and speech models for both academia and industry use cases. DELTA is mainly implemented using TensorFlow and Python 3. DELTA has been used for developing several state-of-the-art algorithms for publications and delivering real production to serve millions of users.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    Euler

    Euler

    A distributed graph deep learning framework.

    As a general data structure with strong expressive ability, graphs can be used to describe many problems in the real world, such as user networks in social scenarios, user and commodity networks in e-commerce scenarios, communication networks in telecom scenarios, and transaction networks in financial scenarios. and drug molecule networks in medical scenarios, etc. Data in the fields of text, speech, and images is easier to process into a grid-like type of Euclidean space, which is suitable for processing by existing deep learning models. Graph is a data type in non-Euclidean space and cannot be directly applied to existing methods, requiring a specially designed graph neural network system. Graph-based learning methods such as graph neural networks combine end-to-end learning with inductive reasoning, and are expected to solve a series of problems such as relational reasoning and interpretability that deep learning cannot handle.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 8

    Spectral Python

    A python module for hyperspectral image processing

    Spectral Python (SPy) is a python package for reading, viewing, manipulating, and classifying hyperspectral image (HSI) data. SPy includes functions for clustering, dimensionality reduction, supervised classification, and more.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 9
    DeepLearning

    DeepLearning

    Deep Learning (Flower Book) mathematical derivation

    ...At the same time, it also introduces deep learning techniques used by practitioners in the industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling and practical methods, and investigates topics such as natural language processing, Applications in speech recognition, computer vision, online recommender systems, bioinformatics, and video games. Finally, the Deep Learning book provides research directions covering theoretical topics including linear factor models, autoencoders, representation learning, structured probabilistic models, etc.
    Downloads: 3 This Week
    Last Update:
    See Project
  • Lightspeed golf course management software Icon
    Lightspeed golf course management software

    Lightspeed Golf is all-in-one golf course management software to help courses simplify operations, drive revenue and deliver amazing golf experiences.

    From tee sheet management, point of sale and payment processing to marketing, automation, reporting and more—Lightspeed is built for the pro shop, restaurant, back office, beverage cart and beyond.
    Learn More
  • 10
    NLP Best Practices

    NLP Best Practices

    Natural Language Processing Best Practices & Examples

    In recent years, natural language processing (NLP) has seen quick growth in quality and usability, and this has helped to drive business adoption of artificial intelligence (AI) solutions. In the last few years, researchers have been applying newer deep learning methods to NLP. Data scientists started moving from traditional methods to state-of-the-art (SOTA) deep neural network (DNN) algorithms which use language models pretrained on large text corpora.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    NLP-progress

    NLP-progress

    Repository to track the progress in Natural Language Processing (NLP)

    Repository to track the progress in Natural Language Processing (NLP), including the datasets and the current state-of-the-art for the most common NLP tasks. This document aims to track the progress in Natural Language Processing (NLP) and give an overview of the state-of-the-art (SOTA) across the most common NLP tasks and their corresponding datasets. It aims to cover both traditional and core NLP tasks such as dependency parsing and part-of-speech tagging as well as more recent ones such as reading comprehension and natural language inference. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    TensorNets

    TensorNets

    High level network definitions with pre-trained weights in TensorFlow

    ...Models are written in tf.contrib.layers, which is lightweight like PyTorch and Keras, and allows for ease of accessibility to every weight and end-point. Also, it is easy to deploy and expand a collection of pre-processing and pre-trained weights. Readability. With recent TensorFlow APIs, more factoring and less indenting can be possible. For example, all the inception variants are implemented as about 500 lines of code in TensorNets while 2000+ lines in official TensorFlow models. Reproducibility. You can always reproduce the original results with simple APIs including feature extractions.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    PyTorch Natural Language Processing

    PyTorch Natural Language Processing

    Basic Utilities for PyTorch Natural Language Processing (NLP)

    PyTorch-NLP is a library for Natural Language Processing (NLP) in Python. It’s built with the very latest research in mind, and was designed from day one to support rapid prototyping. PyTorch-NLP comes with pre-trained embeddings, samplers, dataset loaders, metrics, neural network modules and text encoders. It’s open-source software, released under the BSD3 license. With your batch in hand, you can use PyTorch to develop and train your model using gradient descent.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    Texar

    Texar

    Toolkit for Machine Learning, Natural Language Processing

    Texar is a toolkit aiming to support a broad set of machine learning, especially natural language processing and text generation tasks. Texar provides a library of easy-to-use ML modules and functionalities for composing whatever models and algorithms. The tool is designed for both researchers and practitioners for fast prototyping and experimentation. Texar was originally developed and is actively contributed by Petuum and CMU in collaboration with other institutes.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    Deep Learning Drizzle

    Deep Learning Drizzle

    Drench yourself in Deep Learning, Reinforcement Learning

    Drench yourself in Deep Learning, Reinforcement Learning, Machine Learning, Computer Vision, and NLP by learning from these exciting lectures! Optimization courses which form the foundation for ML, DL, RL. Computer Vision courses which are DL & ML heavy. Speech recognition courses which are DL heavy. Structured Courses on Geometric, Graph Neural Networks. Section on Autonomous Vehicles. Section on Computer Graphics with ML/DL focus.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    MatchZoo

    MatchZoo

    Facilitating the design, comparison and sharing of deep text models

    The goal of MatchZoo is to provide a high-quality codebase for deep text matching research, such as document retrieval, question answering, conversational response ranking, and paraphrase identification. With the unified data processing pipeline, simplified model configuration and automatic hyper-parameters tunning features equipped, MatchZoo is flexible and easy to use. Preprocess your input data in three lines of code, keep track parameters to be passed into the model. Make use of MatchZoo customized loss functions and evaluation metrics. Initialize the model, fine-tune the hyper-parameters. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17

    OpenFace

    A state-of-the-art facial behavior analysis toolkit

    OpenFace is an advanced facial behavior analysis toolkit intended for computer vision and machine learning researchers, those in the affective computing community, and those who are simply interested in creating interactive applications based on facial behavior analysis. The OpenFace toolkit is capable of performing several complex facial analysis tasks, including facial landmark detection, eye-gaze estimation, head pose estimation and facial action unit recognition. OpenFace is able to...
    Downloads: 35 This Week
    Last Update:
    See Project
  • 18
    X-DeepLearning

    X-DeepLearning

    An industrial deep learning framework for high-dimension sparse data

    ...Complete streaming training features including feature admission, feature elimination, model incremental export, feature counting statistics, etc. Background: XDL1.0 focuses on throughput optimization and adopts the one request per thread processing model, which can significantly improve the limit throughput under ultra-high concurrency.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    RoboSat

    RoboSat

    Semantic segmentation on aerial and satellite imagery

    RoboSat is an end-to-end pipeline written in Python 3 for feature extraction from aerial and satellite imagery. Features can be anything visually distinguishable in the imagery for example: buildings, parking lots, roads, or cars.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    TEXT2DATA

    TEXT2DATA

    Text Analytics Platform

    Bring Text Analytics Platform that uses NLP (Natural Language Processing) and Machine Learning to your work environment. Extract essential information from your text documents and let Artificial Intelligence save your time. Get detailed and agile reports on your unstructured data.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 21
    NeuroNER

    NeuroNER

    Named-entity recognition using neural networks

    ...Identified entities can be used in various downstream applications such as patient note de-identification and information extraction systems. They can also be used as features for machine learning systems for other natural language processing tasks. Leverages the state-of-the-art prediction capabilities of neural networks (a.k.a. "deep learning") Is cross-platform, open source, freely available, and straightforward to use. Enables the users to create or modify annotations for a new or existing corpus. Train the neural network that performs the NER. During the training, NeuroNER allows monitoring of the network. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    Tensorpack

    Tensorpack

    A Neural Net Training Interface on TensorFlow, with focus on speed

    ...Scalable data-parallel multi-GPU / distributed training strategy is off-the-shelf to use. Squeeze the best data loading performance of Python with tensorpack.dataflow. Symbolic programming (e.g. tf.data) does not offer the data processing flexibility needed in research. Tensorpack squeezes the most performance out of pure Python with various auto parallelization strategies. There are too many symbolic function wrappers already. Tensorpack includes only a few common layers. You can use any TF symbolic functions inside Tensorpack.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    DeepLearn

    DeepLearn

    Implementation of research papers on Deep Learning+ NLP+ CV in Python

    Welcome to DeepLearn. This repository contains an implementation of the following research papers on NLP, CV, ML, and deep learning. The required dependencies are mentioned in requirement.txt. I will also use dl-text modules for preparing the datasets. If you haven't use it, please do have a quick look at it. CV, transfer learning, representation learning.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    Easy Machine Learning

    Easy Machine Learning

    Easy Machine Learning is a general-purpose dataflow-based system

    ...However, the full potential of machine learning is still far from being realized because using machine learning algorithms is hard, especially on distributed platforms such as Hadoop and Spark. The key barriers come from not only the implementation of the algorithms themselves but also the processing for applying them to real applications which often involve multiple steps and different algorithms. Our platform Easy Machine Learning presents a general-purpose dataflow-based system for easing the process of applying machine learning algorithms to real-world tasks. In the system, a learning task is formulated as a directed acyclic graph (DAG) in which each node represents an operation (e.g. a machine learning algorithm), and each edge represents the flow of the data from one node to its descendants.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 25
    AI learning

    AI learning

    AiLearning, data analysis plus machine learning practice

    We actively respond to the Research Open Source Initiative (DOCX) . Open source today is not just open source, but datasets, models, tutorials, and experimental records. We are also exploring other categories of open source solutions and protocols. I hope you will understand this initiative, combine this initiative with your own interests, and do what you can. Everyone's tiny contributions, together, are the entire open source ecosystem. We are iBooker, a large open-source community,...
    Downloads: 0 This Week
    Last Update:
    See Project