Showing 285 open source projects for "apache"

View related business solutions
  • Automate contact and company data extraction Icon
    Automate contact and company data extraction

    Build lead generation pipelines that pull emails, phone numbers, and company details from directories, maps, social platforms. Full API access.

    Generate leads at scale without building or maintaining scrapers. Use 10,000+ ready-made tools that handle authentication, pagination, and anti-bot protection. Pull data from business directories, social profiles, and public sources, then export to your CRM or database via API. Schedule recurring extractions, enrich existing datasets, and integrate with your workflows.
    Explore Apify Store
  • Automated RMM Tools | RMM Software Icon
    Automated RMM Tools | RMM Software

    Proactively monitor, manage, and support client networks with ConnectWise Automate

    Out-of-the-box scripts. Around-the-clock monitoring. Unmatched automation capabilities. Start doing more with less and exceed service delivery expectations.
    Learn More
  • 1
    marimo

    marimo

    A reactive notebook for Python

    marimo is an open-source reactive notebook for Python, reproducible, git-friendly, executable as a script, and shareable as an app. marimo notebooks are reproducible, extremely interactive, designed for collaboration (git-friendly!), deployable as scripts or apps, and fit for modern Pythonista. Run one cell and marimo reacts by automatically running affected cells, eliminating the error-prone chore of managing the notebook state. marimo's reactive UI elements, like data frame GUIs and plots,...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 2
    GoCV

    GoCV

    Go package for computer vision using OpenCV 4 and beyond

    GoCV gives programmers who use the Go programming language access to the OpenCV 4 computer vision library. The GoCV package supports the latest releases of Go and OpenCV v4.5.4 on Linux, macOS, and Windows. Our mission is to make the Go language a “first-class” client compatible with the latest developments in the OpenCV ecosystem. Computer Vision (CV) is the ability of computers to process visual information, and perform tasks normally associated with those performed by humans. CV software...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 3
    DGL

    DGL

    Python package built to ease deep learning on graph

    Build your models with PyTorch, TensorFlow or Apache MXNet. Fast and memory-efficient message passing primitives for training Graph Neural Networks. Scale to giant graphs via multi-GPU acceleration and distributed training infrastructure. DGL empowers a variety of domain-specific projects including DGL-KE for learning large-scale knowledge graph embeddings, DGL-LifeSci for bioinformatics and cheminformatics, and many others.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    OpenRLHF

    OpenRLHF

    An Easy-to-use, Scalable and High-performance RLHF Framework

    OpenRLHF is an easy-to-use, scalable, and high-performance framework for Reinforcement Learning with Human Feedback (RLHF). It supports various training techniques and model architectures.
    Downloads: 0 This Week
    Last Update:
    See Project
  • The Most Powerful Software Platform for EHSQ and ESG Management Icon
    The Most Powerful Software Platform for EHSQ and ESG Management

    Addresses the needs of small businesses and large global organizations with thousands of users in multiple locations.

    Choose from a complete set of software solutions across EHSQ that address all aspects of top performing Environmental, Health and Safety, and Quality management programs.
    Learn More
  • 5
    BudouX

    BudouX

    Standalone, small, language-neutral

    Standalone. Small. Language-neutral. BudouX is the successor to Budou, the machine learning-powered line break organizer tool. It is standalone. It works with no dependency on third-party word segmenters such as Google cloud natural language API. It is small. It takes only around 15 KB including its machine learning model. It's reasonable to use it even on the client-side. It is language-neutral. You can train a model for any language by feeding a dataset to BudouX’s training...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    MLPerf

    MLPerf

    Reference implementations of MLPerf™ training benchmarks

    This is a repository of reference implementations for the MLPerf training benchmarks. These implementations are valid as starting points for benchmark implementations but are not fully optimized and are not intended to be used for "real" performance measurements of software frameworks or hardware. Benchmarking the performance of training ML models on a wide variety of use cases, software, and hardware drives AI performance across the tech industry. The MLPerf Training working group draws on...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    Chronos Forecasting

    Chronos Forecasting

    Pretrained (Language) Models for Probabilistic Time Series Forecasting

    Chronos is a family of pretrained time series forecasting models based on language model architectures. A time series is transformed into a sequence of tokens via scaling and quantization, and a language model is trained on these tokens using the cross-entropy loss. Once trained, probabilistic forecasts are obtained by sampling multiple future trajectories given the historical context. Chronos models have been trained on a large corpus of publicly available time series data, as well as...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    Shapash

    Shapash

    Explainability and Interpretability to Develop Reliable ML models

    Shapash is a Python library dedicated to the interpretability of Data Science models. It provides several types of visualization that display explicit labels that everyone can understand. Data Scientists can more easily understand their models, share their results and easily document their projects in an HTML report. End users can understand the suggestion proposed by a model using a summary of the most influential criteria.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    Learning Interpretability Tool

    Learning Interpretability Tool

    Interactively analyze ML models to understand their behavior

    The Learning Interpretability Tool (LIT, formerly known as the Language Interpretability Tool) is a visual, interactive ML model-understanding tool that supports text, image, and tabular data. It can be run as a standalone server, or inside of notebook environments such as Colab, Jupyter, and Google Cloud Vertex AI notebooks.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Network Management Software and Tools for Businesses and Organizations | Auvik Networks Icon
    Network Management Software and Tools for Businesses and Organizations | Auvik Networks

    Mapping, inventory, config backup, and more.

    Reduce IT headaches and save time with a proven solution for automated network discovery, documentation, and performance monitoring. Choose Auvik because you'll see value in minutes, and stay with us to improve your IT for years to come.
    Learn More
  • 10
    SkyPilot

    SkyPilot

    SkyPilot: Run AI and batch jobs on any infra

    SkyPilot is a framework for running AI and batch workloads on any infra, offering unified execution, high cost savings, and high GPU availability. Run AI and batch jobs on any infra (Kubernetes or 12+ clouds). Get unified execution, cost savings, and high GPU availability via a simple interface.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    omegaml

    omegaml

    MLOps simplified. From ML Pipeline ⇨ Data Product without the hassle

    omega|ml is the innovative Python-native MLOps platform that provides a scalable development and runtime environment for your Data Products. Works from laptop to cloud.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    MegEngine

    MegEngine

    Easy-to-use deep learning framework with 3 key features

    MegEngine is a fast, scalable and easy-to-use deep learning framework with 3 key features. You can represent quantization/dynamic shape/image pre-processing and even derivation in one model. After training, just put everything into your model and inference it on any platform at ease. Speed and precision problems won't bother you anymore due to the same core inside. In training, GPU memory usage could go down to one-third at the cost of only one additional line, which enables the DTR...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 13
    Flower

    Flower

    Flower: A Friendly Federated Learning Framework

    A unified approach to federated learning, analytics, and evaluation. Federate any workload, any ML framework, and any programming language. Federated learning systems vary wildly from one use case to another. Flower allows for a wide range of different configurations depending on the needs of each individual use case. Flower originated from a research project at the University of Oxford, so it was built with AI research in mind. Many components can be extended and overridden to build new...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 14
    Tokenizers

    Tokenizers

    Fast State-of-the-Art Tokenizers optimized for Research and Production

    Fast State-of-the-art tokenizers, optimized for both research and production. Tokenizers provides an implementation of today’s most used tokenizers, with a focus on performance and versatility. These tokenizers are also used in Transformers. Train new vocabularies and tokenize, using today’s most used tokenizers. Extremely fast (both training and tokenization), thanks to the Rust implementation. Takes less than 20 seconds to tokenize a GB of text on a server’s CPU. Easy to use, but also...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 15
    TensorRT Backend For ONNX

    TensorRT Backend For ONNX

    ONNX-TensorRT: TensorRT backend for ONNX

    Parses ONNX models for execution with TensorRT. Development on the main branch is for the latest version of TensorRT 8.4.1.5 with full dimensions and dynamic shape support. For previous versions of TensorRT, refer to their respective branches. Building INetwork objects in full dimensions mode with dynamic shape support requires calling the C++ and Python API. Current supported ONNX operators are found in the operator support matrix. For building within docker, we recommend using and setting...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 16
    StatsForecast

    StatsForecast

    Fast forecasting with statistical and econometric models

    StatsForecast is a Python library for time-series forecasting that delivers a suite of classical statistical and econometric forecasting models optimized for high performance and scalability. It is designed not just for academic experiments but for production-level time-series forecasting, meaning it handles forecasting for many series at once, efficiently, reliably, and with minimal overhead. The library implements a broad set of models, including AutoARIMA, ETS, CES, Theta, plus a battery...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 17
    TensorFlow Probability

    TensorFlow Probability

    Probabilistic reasoning and statistical analysis in TensorFlow

    TensorFlow Probability is a library for probabilistic reasoning and statistical analysis. TensorFlow Probability (TFP) is a Python library built on TensorFlow that makes it easy to combine probabilistic models and deep learning on modern hardware (TPU, GPU). It's for data scientists, statisticians, ML researchers, and practitioners who want to encode domain knowledge to understand data and make predictions. Since TFP inherits the benefits of TensorFlow, you can build, fit, and deploy a model...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 18
    Haiku Sonnet for JAX

    Haiku Sonnet for JAX

    JAX-based neural network library

    Haiku is a library built on top of JAX designed to provide simple, composable abstractions for machine learning research. JAX is a numerical computing library that combines NumPy, automatic differentiation, and first-class GPU/TPU support. Haiku is a simple neural network library for JAX that enables users to use familiar object-oriented programming models while allowing full access to JAX's pure function transformations. Haiku provides two core tools: a module abstraction, hk.Module, and a...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    Aim

    Aim

    An easy-to-use & supercharged open-source experiment tracker

    Aim logs all your AI metadata (experiments, prompts, etc) enabling a UI to compare & observe them and SDK to query them programmatically. The Aim standard package comes with all integrations. If you'd like to modify the integration and make it custom, create a new integration package and share with others. Aim is an open-source, self-hosted AI Metadata tracking tool designed to handle 100,000s of tracked metadata sequences. The two most famous AI metadata applications are: experiment...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    VisualDL

    VisualDL

    Deep Learning Visualization Toolkit

    VisualDL, a visualization analysis tool of PaddlePaddle, provides a variety of charts to show the trends of parameters and visualizes model structures, data samples, histograms of tensors, PR curves , ROC curves and high-dimensional data distributions. It enables users to understand the training process and the model structure more clearly and intuitively so as to optimize models efficiently. VisualDL provides various visualization functions, including tracking metrics in real-time,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    AutoKeras

    AutoKeras

    AutoML library for deep learning

    AutoKeras: An AutoML system based on Keras. It is developed by DATA Lab at Texas A&M University. The goal of AutoKeras is to make machine learning accessible to everyone. AutoKeras only support Python 3. If you followed previous steps to use virtualenv to install tensorflow, you can just activate the virtualenv. Currently, AutoKeras is only compatible with Python >= 3.7 and TensorFlow >= 2.8.0. AutoKeras supports several tasks with extremely simple interface. AutoKeras would search for the...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    Kubeflow

    Kubeflow

    Machine Learning Toolkit for Kubernetes

    Kubeflow is an open source Cloud Native machine learning platform based on Google’s internal machine learning pipelines. It seeks to make deployments of machine learning workflows on Kubernetes simple, portable and scalable. With Kubeflow you can deploy best-of-breed open-source systems for ML to diverse infrastructures. You can also take advantage of a number of great features, such as services for managing Jupyter notebooks and support for a TensorFlow Serving container. Wherever you...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    handson-ml3

    handson-ml3

    Fundamentals of Machine Learning and Deep Learning

    handson-ml3 contains the Jupyter notebooks and code for the third edition of the book Hands-On Machine Learning with Scikit-Learn, Keras & TensorFlow. It guides readers through modern machine learning and deep learning workflows using Python, with examples spanning data preparation, supervised and unsupervised learning, deep neural networks, RL, and production-ready model deployment. The third edition updates the content for TensorFlow 2 and Keras, introduces new chapters (for example on...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 24
    Porcupine

    Porcupine

    On-device wake word detection powered by deep learning

    Build always-listening yet private voice applications. Porcupine is a highly-accurate and lightweight wake word engine. It enables building always-listening voice-enabled applications. It is using deep neural networks trained in real-world environments. Compact and computationally-efficient. It is perfect for IoT. Cross-platform. Arm Cortex-M, STM32, PSoC, Arduino, and i.MX RT. Raspberry Pi, NVIDIA Jetson Nano, and BeagleBone. Android and iOS. Chrome, Safari, Firefox, and Edge. Linux...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 25
    satellite-image-deep-learning

    satellite-image-deep-learning

    Resources for deep learning with satellite & aerial imagery

    This page lists resources for performing deep learning on satellite imagery. To a lesser extent classical Machine learning (e.g. random forests) are also discussed, as are classical image processing techniques. Note there is a huge volume of academic literature published on these topics, and this repository does not seek to index them all but rather list approachable resources with published code that will benefit both the research and developer communities. If you find this work useful...
    Downloads: 1 This Week
    Last Update:
    See Project