Showing 507 open source projects for "python source"

View related business solutions
  • Run Any Workload on Compute Engine VMs Icon
    Run Any Workload on Compute Engine VMs

    From dev environments to AI training, choose preset or custom VMs with 1–96 vCPUs and industry-leading 99.95% uptime SLA.

    Compute Engine delivers high-performance virtual machines for web apps, databases, containers, and AI workloads. Choose from general-purpose, compute-optimized, or GPU/TPU-accelerated machine types—or build custom VMs to match your exact specs. With live migration and automatic failover, your workloads stay online. New customers get $300 in free credits.
    Try Compute Engine
  • Easily Host LLMs and Web Apps on Cloud Run Icon
    Easily Host LLMs and Web Apps on Cloud Run

    Run everything from popular models with on-demand NVIDIA L4 GPUs to web apps without infrastructure management.

    Run frontend and backend services, batch jobs, host LLMs, and queue processing workloads without the need to manage infrastructure. Cloud Run gives you on-demand GPU access for hosting LLMs and running real-time AI—with 5-second cold starts and automatic scale-to-zero so you only pay for actual usage. New customers get $300 in free credit to start.
    Try Cloud Run Free
  • 1
    Dive-into-DL-TensorFlow2.0

    Dive-into-DL-TensorFlow2.0

    Dive into Deep Learning

    This project changes the MXNet code implementation in the original book "Learning Deep Learning by Hand" to TensorFlow2 implementation. After consulting Mr. Li Mu by the tutor of archersama , the implementation of this project has been agreed by Mr. Li Mu. Original authors: Aston Zhang, Li Mu, Zachary C. Lipton, Alexander J. Smola and other community contributors. There are some differences between the Chinese and English versions of this book . This project mainly focuses on TensorFlow2...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 2
    Azure Machine Learning Python SDK

    Azure Machine Learning Python SDK

    Python notebooks with ML and deep learning examples

    Azure Machine Learning Python SDK is a curated repository of Python-based Jupyter notebooks that demonstrate how to develop, train, evaluate, and deploy machine learning and deep learning models using the Azure Machine Learning Python SDK. The content spans a wide range of real-world tasks — from foundational quickstarts that teach users how to configure an Azure ML workspace and connect to compute resources, to advanced tutorials on using pipelines, automated machine learning, and dataset...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 3
    MatchZoo

    MatchZoo

    Facilitating the design, comparison and sharing of deep text models

    The goal of MatchZoo is to provide a high-quality codebase for deep text matching research, such as document retrieval, question answering, conversational response ranking, and paraphrase identification. With the unified data processing pipeline, simplified model configuration and automatic hyper-parameters tunning features equipped, MatchZoo is flexible and easy to use. Preprocess your input data in three lines of code, keep track parameters to be passed into the model. Make use of MatchZoo...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    NiftyNet

    NiftyNet

    An open-source convolutional neural networks platform for research

    An open-source convolutional neural networks platform for medical image analysis and image-guided therapy. NiftyNet is a TensorFlow-based open-source convolutional neural networks (CNNs) platform for research in medical image analysis and image-guided therapy. NiftyNet’s modular structure is designed for sharing networks and pre-trained models. Using this modular structure you can get started with established pre-trained networks using built-in tools. Adapt existing networks to your imaging...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Ship AI Apps Faster with Vertex AI Icon
    Ship AI Apps Faster with Vertex AI

    Go from idea to deployed AI app without managing infrastructure. Vertex AI offers one platform for the entire AI development lifecycle.

    Ship AI apps and features faster with Vertex AI—your end-to-end AI platform. Access Gemini 3 and 200+ foundation models, fine-tune for your needs, and deploy with enterprise-grade MLOps. Build chatbots, agents, or custom models. New customers get $300 in free credit.
    Try Vertex AI Free
  • 5
    nGraph

    nGraph

    nGraph has moved to OpenVINO

    Frameworks using nGraph Compiler stack to execute workloads have shown up to 45X performance boost when compared to native framework implementations. We've also seen performance boosts running workloads that are not included on the list of Validated workloads, thanks to nGraph's powerful subgraph pattern matching. Additionally, we have integrated nGraph with PlaidML to provide deep learning performance acceleration on Intel, nVidia, & AMD GPUs. nGraph Compiler aims to accelerate developing...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    Spotlight

    Spotlight

    Deep recommender models using PyTorch

    Spotlight uses PyTorch to build both deep and shallow recommender models. By providing both a slew of building blocks for loss functions (various pointwise and pairwise ranking losses), representations (shallow factorization representations, deep sequence models), and utilities for fetching (or generating) recommendation datasets, it aims to be a tool for rapid exploration and prototyping of new recommender models. Spotlight offers a slew of popular datasets, including Movielens 100K, 1M,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    MLBox

    MLBox

    MLBox is a powerful Automated Machine Learning python library

    MLBox is a powerful Automated Machine Learning python library. Fast reading and distributed data preprocessing/cleaning/formatting. Highly robust feature selection and leak detection. Accurate hyper-parameter optimization in high-dimensional space. State-of-the-art predictive models for classification and regression (Deep Learning, Stacking, LightGBM,...) Prediction with model interpretation. MLBox has been developed and used by many active community members. Your help is very valuable to...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    Coach

    Coach

    Enables easy experimentation with state of the art algorithms

    Coach is a python framework that models the interaction between an agent and an environment in a modular way. With Coach, it is possible to model an agent by combining various building blocks, and training the agent on multiple environments. The available environments allow testing the agent in different fields such as robotics, autonomous driving, games and more. It exposes a set of easy-to-use APIs for experimenting with new RL algorithms and allows simple integration of new environments...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    Shogun

    Shogun

    Unified and efficient Machine Learning since 1999

    Shogun is a unified and efficient Machine Learning since 1999. Shogun is implemented in C++ and offers automatically generated, unified interfaces to Python, Octave, Java / Scala, Ruby, C#, R, Lua. We are currently working on adding more languages including JavaScript, D, and Matlab.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Cut Data Warehouse Costs up to 54% with BigQuery Icon
    Cut Data Warehouse Costs up to 54% with BigQuery

    Migrate from Snowflake, Databricks, or Redshift with free migration tools. Exabyte scale without the Exabyte price.

    BigQuery delivers up to 54% lower TCO than cloud alternatives. Migrate from legacy or competing warehouses using free BigQuery Migration Service with automated SQL translation. Get serverless scale with no infrastructure to manage, compressed storage, and flexible pricing—pay per query or commit for deeper discounts. New customers get $300 in free credit.
    Try BigQuery Free
  • 10
    Rainbow

    Rainbow

    Rainbow: Combining Improvements in Deep Reinforcement Learning

    Combining improvements in deep reinforcement learning. Results and pretrained models can be found in the releases. Data-efficient Rainbow can be run using several options (note that the "unbounded" memory is implemented here in practice by manually setting the memory capacity to be the same as the maximum number of timesteps).
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    RoboSat

    RoboSat

    Semantic segmentation on aerial and satellite imagery

    RoboSat is an end-to-end pipeline written in Python 3 for feature extraction from aerial and satellite imagery. Features can be anything visually distinguishable in the imagery for example: buildings, parking lots, roads, or cars.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 12
    ChainerCV

    ChainerCV

    ChainerCV: a Library for Deep Learning in Computer Vision

    ChainerCV is a collection of tools to train and run neural networks for computer vision tasks using Chainer. In ChainerCV, we define the object detection task as a problem of, given an image, bounding box-based localization and categorization of objects. Bounding boxes in an image are represented as a two-dimensional array of shape (R,4), where R is the number of bounding boxes and the second axis corresponds to the coordinates of bounding boxes. ChainerCV supports dataset loaders, which can...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    FID score for PyTorch

    FID score for PyTorch

    Compute FID scores with PyTorch

    This is a port of the official implementation of Fréchet Inception Distance to PyTorch. FID is a measure of similarity between two datasets of images. It was shown to correlate well with human judgement of visual quality and is most often used to evaluate the quality of samples of Generative Adversarial Networks. FID is calculated by computing the Fréchet distance between two Gaussians fitted to feature representations of the Inception network. The weights and the model are exactly the same...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    CakeChat

    CakeChat

    CakeChat: Emotional Generative Dialog System

    CakeChat is a backend for chatbots that are able to express emotions via conversations. The code is flexible and allows to condition model's responses by an arbitrary categorical variable. For example, you can train your own persona-based neural conversational model or create an emotional chatting machine. Hierarchical Recurrent Encoder-Decoder (HRED) architecture for handling deep dialog context. Multilayer RNN with GRU cells. The first layer of the utterance-level encoder is always...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    xLearn

    xLearn

    High performance, easy-to-use, and scalable machine learning (ML)

    xLearn is a high-performance, easy-to-use, and scalable machine learning package that contains linear model (LR), factorization machines (FM), and field-aware factorization machines (FFM), all of which can be used to solve large-scale machine learning problems. xLearn is especially useful for solving machine learning problems on large-scale sparse data. Many real-world datasets deal with high dimensional sparse feature vectors like a recommendation system where the number of categories and...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    NeuralCoref

    NeuralCoref

    Fast Coreference Resolution in spaCy with Neural Networks

    NeuralCoref is a pipeline extension for spaCy 2.1+ which annotates and resolves coreference clusters using a neural network. NeuralCoref is production-ready, integrated in spaCy's NLP pipeline and extensible to new training datasets. For a brief introduction to coreference resolution and NeuralCoref, please refer to our blog post. NeuralCoref is written in Python/Cython and comes with a pre-trained statistical model for English only. NeuralCoref is accompanied by a visualization client...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 17
    automl-gs

    automl-gs

    Provide an input CSV and a target field to predict, generate a model

    Give an input CSV file and a target field you want to predict to automl-gs, and get a trained high-performing machine learning or deep learning model plus native Python code pipelines allowing you to integrate that model into any prediction workflow. No black box: you can see exactly how the data is processed, and how the model is constructed, and you can make tweaks as necessary. automl-gs is an AutoML tool which, unlike Microsoft's NNI, Uber's Ludwig, and TPOT, offers a zero code/model...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 18
    easy12306

    easy12306

    Automatic recognition of 12306 verification code

    Automatic recognition of 12306 verification code using machine learning algorithm. Identify never-before-seen pictures.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    NeuroNER

    NeuroNER

    Named-entity recognition using neural networks

    Named-entity recognition (NER) aims at identifying entities of interest in the text, such as location, organization and temporal expression. Identified entities can be used in various downstream applications such as patient note de-identification and information extraction systems. They can also be used as features for machine learning systems for other natural language processing tasks. Leverages the state-of-the-art prediction capabilities of neural networks (a.k.a. "deep learning") Is...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 20
    Easy-TensorFlow

    Easy-TensorFlow

    Simple and comprehensive tutorials in TensorFlow

    The goal of this repository is to provide comprehensive tutorials for TensorFlow while maintaining the simplicity of the code. Each tutorial includes a detailed explanation (written in .ipynb) format, as well as the source code (in .py format). There is a necessity to address the motivations for this project. TensorFlow is one of the deep learning frameworks available with the largest community. This repository is dedicated to suggesting a simple path to learn TensorFlow. In addition to the...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    Tensorpack

    Tensorpack

    A Neural Net Training Interface on TensorFlow, with focus on speed

    Tensorpack is a neural network training interface based on TensorFlow v1. Uses TensorFlow in the efficient way with no extra overhead. On common CNNs, it runs training 1.2~5x faster than the equivalent Keras code. Your training can probably gets faster if written with Tensorpack. Scalable data-parallel multi-GPU / distributed training strategy is off-the-shelf to use. Squeeze the best data loading performance of Python with tensorpack.dataflow. Symbolic programming (e.g. tf.data) does not...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    Deepvoice3_pytorch

    Deepvoice3_pytorch

    PyTorch implementation of convolutional neural networks

    An open source implementation of Deep Voice 3: Scaling Text-to-Speech with Convolutional Sequence Learning.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 23

    TensorImage

    Image classification library for easily training and deploying models

    (Visit our github repository at https://github.com/TensorImage/tensorimage for more information) TensorImage is and open source package for image classification. It has a wide range of data augmentation operations that can be performed over training data to prevent overfitting and increase testing accuracy. TensorImage is easy to use and manage as all files, trained models and data are organized within a workspace directory, which you can change at any time in the configuration file,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    Skater

    Skater

    Python library for model interpretation/explanations

    Skater is a unified framework to enable Model Interpretation for all forms of the model to help one build an Interpretable machine learning system often needed for real-world use-cases(** we are actively working towards to enabling faithful interpretability for all forms models). It is an open-source python library designed to demystify the learned structures of a black box model both globally(inference on the basis of a complete data set) and locally(inference about an individual prediction). The concept of model interpretability in the field of machine learning is still new, largely subjective, and, at times, controversial. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    3D ResNets for Action Recognition

    3D ResNets for Action Recognition

    3D ResNets for Action Recognition (CVPR 2018)

    We uploaded the pretrained models described in this paper including ResNet-50 pretrained on the combined dataset with Kinetics-700 and Moments in Time. We significantly updated our scripts. If you want to use older versions to reproduce our CVPR2018 paper, you should use the scripts in the CVPR2018 branch.
    Downloads: 0 This Week
    Last Update:
    See Project
MongoDB Logo MongoDB