Showing 512 open source projects for "compiler python linux"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Build apps or websites quickly on a fully managed platform Icon
    Build apps or websites quickly on a fully managed platform

    Get two million requests free per month.

    Run frontend and backend services, batch jobs, host LLMs, and queue processing workloads without the need to manage infrastructure.
    Try it for free
  • 1
    MatchZoo

    MatchZoo

    Facilitating the design, comparison and sharing of deep text models

    The goal of MatchZoo is to provide a high-quality codebase for deep text matching research, such as document retrieval, question answering, conversational response ranking, and paraphrase identification. With the unified data processing pipeline, simplified model configuration and automatic hyper-parameters tunning features equipped, MatchZoo is flexible and easy to use. Preprocess your input data in three lines of code, keep track parameters to be passed into the model. Make use of MatchZoo...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    NiftyNet

    NiftyNet

    An open-source convolutional neural networks platform for research

    An open-source convolutional neural networks platform for medical image analysis and image-guided therapy. NiftyNet is a TensorFlow-based open-source convolutional neural networks (CNNs) platform for research in medical image analysis and image-guided therapy. NiftyNet’s modular structure is designed for sharing networks and pre-trained models. Using this modular structure you can get started with established pre-trained networks using built-in tools. Adapt existing networks to your imaging...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    Spotlight

    Spotlight

    Deep recommender models using PyTorch

    Spotlight uses PyTorch to build both deep and shallow recommender models. By providing both a slew of building blocks for loss functions (various pointwise and pairwise ranking losses), representations (shallow factorization representations, deep sequence models), and utilities for fetching (or generating) recommendation datasets, it aims to be a tool for rapid exploration and prototyping of new recommender models. Spotlight offers a slew of popular datasets, including Movielens 100K, 1M,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    DCVGAN

    DCVGAN

    DCVGAN: Depth Conditional Video Generation, ICIP 2019.

    This paper proposes a new GAN architecture for video generation with depth videos and color videos. The proposed model explicitly uses the information of depth in a video sequence as additional information for a GAN-based video generation scheme to make the model understands scene dynamics more accurately. The model uses pairs of color video and depth video for training and generates a video using the two steps. Generate the depth video to model the scene dynamics based on the geometrical...
    Downloads: 0 This Week
    Last Update:
    See Project
  • MongoDB Atlas | Run databases anywhere Icon
    MongoDB Atlas | Run databases anywhere

    Ensure the availability of your data with coverage across AWS, Azure, and GCP on MongoDB Atlas—the multi-cloud database for every enterprise.

    MongoDB Atlas allows you to build and run modern applications across 125+ cloud regions, spanning AWS, Azure, and Google Cloud. Its multi-cloud clusters enable seamless data distribution and automated failover between cloud providers, ensuring high availability and flexibility without added complexity.
    Learn More
  • 5
    Coach

    Coach

    Enables easy experimentation with state of the art algorithms

    Coach is a python framework that models the interaction between an agent and an environment in a modular way. With Coach, it is possible to model an agent by combining various building blocks, and training the agent on multiple environments. The available environments allow testing the agent in different fields such as robotics, autonomous driving, games and more. It exposes a set of easy-to-use APIs for experimenting with new RL algorithms and allows simple integration of new environments...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    Shogun

    Shogun

    Unified and efficient Machine Learning since 1999

    Shogun is a unified and efficient Machine Learning since 1999. Shogun is implemented in C++ and offers automatically generated, unified interfaces to Python, Octave, Java / Scala, Ruby, C#, R, Lua. We are currently working on adding more languages including JavaScript, D, and Matlab.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    Rainbow

    Rainbow

    Rainbow: Combining Improvements in Deep Reinforcement Learning

    Combining improvements in deep reinforcement learning. Results and pretrained models can be found in the releases. Data-efficient Rainbow can be run using several options (note that the "unbounded" memory is implemented here in practice by manually setting the memory capacity to be the same as the maximum number of timesteps).
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    RoboSat

    RoboSat

    Semantic segmentation on aerial and satellite imagery

    RoboSat is an end-to-end pipeline written in Python 3 for feature extraction from aerial and satellite imagery. Features can be anything visually distinguishable in the imagery for example: buildings, parking lots, roads, or cars.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    ChainerCV

    ChainerCV

    ChainerCV: a Library for Deep Learning in Computer Vision

    ChainerCV is a collection of tools to train and run neural networks for computer vision tasks using Chainer. In ChainerCV, we define the object detection task as a problem of, given an image, bounding box-based localization and categorization of objects. Bounding boxes in an image are represented as a two-dimensional array of shape (R,4), where R is the number of bounding boxes and the second axis corresponds to the coordinates of bounding boxes. ChainerCV supports dataset loaders, which can...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Powering the best of the internet | Fastly Icon
    Powering the best of the internet | Fastly

    Fastly's edge cloud platform delivers faster, safer, and more scalable sites and apps to customers.

    Ensure your websites, applications and services can effortlessly handle the demands of your users with Fastly. Fastly’s portfolio is designed to be highly performant, personalized and secure while seamlessly scaling to support your growth.
    Try for free
  • 10
    CakeChat

    CakeChat

    CakeChat: Emotional Generative Dialog System

    CakeChat is a backend for chatbots that are able to express emotions via conversations. The code is flexible and allows to condition model's responses by an arbitrary categorical variable. For example, you can train your own persona-based neural conversational model or create an emotional chatting machine. Hierarchical Recurrent Encoder-Decoder (HRED) architecture for handling deep dialog context. Multilayer RNN with GRU cells. The first layer of the utterance-level encoder is always...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 11
    FID score for PyTorch

    FID score for PyTorch

    Compute FID scores with PyTorch

    This is a port of the official implementation of Fréchet Inception Distance to PyTorch. FID is a measure of similarity between two datasets of images. It was shown to correlate well with human judgement of visual quality and is most often used to evaluate the quality of samples of Generative Adversarial Networks. FID is calculated by computing the Fréchet distance between two Gaussians fitted to feature representations of the Inception network. The weights and the model are exactly the same...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    xLearn

    xLearn

    High performance, easy-to-use, and scalable machine learning (ML)

    xLearn is a high-performance, easy-to-use, and scalable machine learning package that contains linear model (LR), factorization machines (FM), and field-aware factorization machines (FFM), all of which can be used to solve large-scale machine learning problems. xLearn is especially useful for solving machine learning problems on large-scale sparse data. Many real-world datasets deal with high dimensional sparse feature vectors like a recommendation system where the number of categories and...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    NeuralCoref

    NeuralCoref

    Fast Coreference Resolution in spaCy with Neural Networks

    NeuralCoref is a pipeline extension for spaCy 2.1+ which annotates and resolves coreference clusters using a neural network. NeuralCoref is production-ready, integrated in spaCy's NLP pipeline and extensible to new training datasets. For a brief introduction to coreference resolution and NeuralCoref, please refer to our blog post. NeuralCoref is written in Python/Cython and comes with a pre-trained statistical model for English only. NeuralCoref is accompanied by a visualization client...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    automl-gs

    automl-gs

    Provide an input CSV and a target field to predict, generate a model

    Give an input CSV file and a target field you want to predict to automl-gs, and get a trained high-performing machine learning or deep learning model plus native Python code pipelines allowing you to integrate that model into any prediction workflow. No black box: you can see exactly how the data is processed, and how the model is constructed, and you can make tweaks as necessary. automl-gs is an AutoML tool which, unlike Microsoft's NNI, Uber's Ludwig, and TPOT, offers a zero code/model...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    easy12306

    easy12306

    Automatic recognition of 12306 verification code

    Automatic recognition of 12306 verification code using machine learning algorithm. Identify never-before-seen pictures.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    NeuroNER

    NeuroNER

    Named-entity recognition using neural networks

    Named-entity recognition (NER) aims at identifying entities of interest in the text, such as location, organization and temporal expression. Identified entities can be used in various downstream applications such as patient note de-identification and information extraction systems. They can also be used as features for machine learning systems for other natural language processing tasks. Leverages the state-of-the-art prediction capabilities of neural networks (a.k.a. "deep learning") Is...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    Easy-TensorFlow

    Easy-TensorFlow

    Simple and comprehensive tutorials in TensorFlow

    The goal of this repository is to provide comprehensive tutorials for TensorFlow while maintaining the simplicity of the code. Each tutorial includes a detailed explanation (written in .ipynb) format, as well as the source code (in .py format). There is a necessity to address the motivations for this project. TensorFlow is one of the deep learning frameworks available with the largest community. This repository is dedicated to suggesting a simple path to learn TensorFlow. In addition to the...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    Tensorpack

    Tensorpack

    A Neural Net Training Interface on TensorFlow, with focus on speed

    Tensorpack is a neural network training interface based on TensorFlow v1. Uses TensorFlow in the efficient way with no extra overhead. On common CNNs, it runs training 1.2~5x faster than the equivalent Keras code. Your training can probably gets faster if written with Tensorpack. Scalable data-parallel multi-GPU / distributed training strategy is off-the-shelf to use. Squeeze the best data loading performance of Python with tensorpack.dataflow. Symbolic programming (e.g. tf.data) does not offer...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    Deepvoice3_pytorch

    Deepvoice3_pytorch

    PyTorch implementation of convolutional neural networks

    An open source implementation of Deep Voice 3: Scaling Text-to-Speech with Convolutional Sequence Learning.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    Skater

    Skater

    Python library for model interpretation/explanations

    Skater is a unified framework to enable Model Interpretation for all forms of the model to help one build an Interpretable machine learning system often needed for real-world use-cases(** we are actively working towards to enabling faithful interpretability for all forms models). It is an open-source python library designed to demystify the learned structures of a black box model both globally(inference on the basis of a complete data set) and locally(inference about an individual prediction...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    Pragmatic AI

    Pragmatic AI

    [Book-2019] Pragmatic AI: An Introduction to Cloud-based ML

    Pragmatic AI is the first truly practical guide to solving real-world problems with contemporary machine learning, artificial intelligence, and cloud computing tools. Writing for business professionals, decision-makers, and students who aren’t professional data scientists, Noah Gift demystifies all the tools and technologies you need to get results. He illuminates powerful off-the-shelf cloud-based solutions from Google, Amazon, and Microsoft, as well as accessible techniques using Python and R...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 22
    3D ResNets for Action Recognition

    3D ResNets for Action Recognition

    3D ResNets for Action Recognition (CVPR 2018)

    We uploaded the pretrained models described in this paper including ResNet-50 pretrained on the combined dataset with Kinetics-700 and Moments in Time. We significantly updated our scripts. If you want to use older versions to reproduce our CVPR2018 paper, you should use the scripts in the CVPR2018 branch.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    Scikit-plot

    Scikit-plot

    An intuitive library to add plotting functionality to scikit-learn

    Single line functions for detailed visualizations. Scikit-plot is the result of an unartistic data scientist's dreadful realization that visualization is one of the most crucial components in the data science process, not just a mere afterthought. Gaining insights is simply a lot easier when you're looking at a colored heatmap of a confusion matrix complete with class labels rather than a single-line dump of numbers enclosed in brackets. Besides, if you ever need to present your results to...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    anaGo

    anaGo

    Bidirectional LSTM-CRF and ELMo for Named-Entity Recognition

    anaGo is a Python library for sequence labeling(NER, PoS Tagging,...), implemented in Keras. anaGo can solve sequence labeling tasks such as named entity recognition (NER), part-of-speech tagging (POS tagging), semantic role labeling (SRL) and so on. Unlike traditional sequence labeling solver, anaGo doesn't need to define any language-dependent features. Thus, we can easily use anaGo for any language. In anaGo, the simplest type of model is the Sequence model. Sequence model includes essential...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25

    TensorImage

    Image classification library for easily training and deploying models

    (Visit our github repository at https://github.com/TensorImage/tensorimage for more information) TensorImage is and open source package for image classification. It has a wide range of data augmentation operations that can be performed over training data to prevent overfitting and increase testing accuracy. TensorImage is easy to use and manage as all files, trained models and data are organized within a workspace directory, which you can change at any time in the configuration file,...
    Downloads: 0 This Week
    Last Update:
    See Project
Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.