Showing 275 open source projects for "using"

View related business solutions
  • Outgrown Windows Task Scheduler? Icon
    Outgrown Windows Task Scheduler?

    Free diagnostic identifies where your workflow is breaking down—with instant analysis of your scheduling environment.

    Windows Task Scheduler wasn't built for complex, cross-platform automation. Get a free diagnostic that shows exactly where things are failing and provides remediation recommendations. Interactive HTML report delivered in minutes.
    Download Free Tool
  • Retool your internal operations Icon
    Retool your internal operations

    Generate secure, production-grade apps that connect to your business data. Not just prototypes, but tools your team can actually deploy.

    Build internal software that meets enterprise security standards without waiting on engineering resources. Retool connects to your databases, APIs, and data sources while maintaining the permissions and controls you need. Create custom dashboards, admin tools, and workflows from natural language prompts—all deployed in your cloud with security baked in. Stop duct-taping operations together, start building in Retool.
    Build an app in Retool
  • 1
    Intel neon

    Intel neon

    Intel® Nervana™ reference deep learning framework

    neon is Intel's reference deep learning framework committed to best performance on all hardware. Designed for ease of use and extensibility. See the new features in our latest release. We want to highlight that neon v2.0.0+ has been optimized for much better performance on CPUs by enabling Intel Math Kernel Library (MKL). The DNN (Deep Neural Networks) component of MKL that is used by neon is provided free of charge and downloaded automatically as part of the neon installation. The gpu...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 2
    UnrealCV

    UnrealCV

    Connecting Computer Vision to Unreal Engine

    UnrealCV is a project to help computer vision researchers build virtual worlds using Unreal Engine (UE). It extends UE with a plugin. UnrealCV can be used in two ways. The first one is using a compiled game binary with UnrealCV embedded. This is as simple as running a game, no knowledge of Unreal Engine is required. The second is installing the UnrealCV plugin into Unreal Engine and using the editor to build a new virtual world.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    NNVM

    NNVM

    Open deep learning compiler stack for cpu, gpu

    The vision of the Apache NNVM Project is to host a diverse community of experts and practitioners in machine learning, compilers, and systems architecture to build an accessible, extensible, and automated open-source framework that optimizes current and emerging machine learning models for any hardware platform. Compilation of deep learning models into minimum deployable modules. Infrastructure to automatically generates and optimize models on more backend with better performance....
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    Lip Reading

    Lip Reading

    Cross Audio-Visual Recognition using 3D Architectures

    ...We proposed the utilization of a coupled 3D Convolutional Neural Network (CNN) architecture that can map both modalities into a representation space to evaluate the correspondence of audio-visual streams using the learned multimodal features.
    Downloads: 1 This Week
    Last Update:
    See Project
  • Atera all-in-one platform IT management software with AI agents Icon
    Atera all-in-one platform IT management software with AI agents

    Ideal for internal IT departments or managed service providers (MSPs)

    Atera’s AI agents don’t just assist, they act. From detection to resolution, they handle incidents and requests instantly, taking your IT management from automated to autonomous.
    Learn More
  • 5

    OWL Machine Learning

    Machine learning algorithm using OWL

    Feature construction and selection are two key factors in the field of Machine Learning (ML). Usually, these are very time-consuming and complex tasks because the features have to be manually crafted. The features are aggregated, combined or split to create features from raw data. This project makes use of ontologies to automatically generate features for the ML algorithms. The features are generated by combining the concepts and relationships that are already in the knowledge base,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    Machine Learning for OpenCV

    Machine Learning for OpenCV

    M. Beyeler (2017). Machine Learning for OpenCV

    M. Beyeler (2017). Machine Learning for OpenCV: Intelligent image processing with Python. Packt Publishing Ltd., ISBN 978-178398028-4.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    Caffe2

    Caffe2

    Caffe2 is a lightweight, modular, and scalable deep learning framework

    ...Caffe2 is a deep learning framework that provides an easy and straightforward way for you to experiment with deep learning and leverage community contributions of new models and algorithms. You can bring your creations to scale using the power of GPUs in the cloud or to the masses on mobile with Caffe2’s cross-platform libraries. Modularity and being designed for both scale and mobile deployments are the high-level answers to the first question. In many ways Caffe2 is an un-framework because it is so flexible and modular. The original Caffe framework was useful for large-scale product use cases, especially with its unparalleled performance and well tested C++ codebase. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    Keras.js

    Keras.js

    Run Keras models in the browser, with GPU support using WebGL

    Run Keras models in the browser, with GPU support provided by WebGL 2. Models can be run in Node.js as well, but only in CPU mode. Because Keras abstracts away a number of frameworks as backends, the models can be trained in any backend, including TensorFlow, CNTK, etc. Check out the demos/ directory for real examples running Keras.js in VueJS. Library version compatibility, Keras 2.1.2.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9

    Training Image Operators from Samples

    Tools to train Image Operators automatically from a set of samples.

    TRIOS - Training Image Operators from Samples is a set of tools to bring Image Processing closer to scientists in general. It is capable of estimating an operator between two images using only pairs of samples that contain an input image and the desired output. The operator is saved to a file and can be applied to any image.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Incredable is the first DLT-secured platform that allows you to save time, eliminate errors, and ensure your organization is compliant all in one place. Icon
    Incredable is the first DLT-secured platform that allows you to save time, eliminate errors, and ensure your organization is compliant all in one place.

    For healthcare Providers and Facilities

    Incredable streamlines and simplifies the complex process of medical credentialing for hospitals and medical facilities, helping you save valuable time, reduce costs, and minimize risks. With Incredable, you can effortlessly manage all your healthcare providers and their credentials within a single, unified platform. Our state-of-the-art technology ensures top-notch data security, giving you peace of mind.
    Learn More
  • 10
    libfastknn

    libfastknn

    Fast C++ KNN classifier

    KNN Classifier library for C++, at background using armadillo. In k-NN classification, the output is a class membership. An object is classified by a majority vote of its neighbors, with the object being assigned to the class most common among its k nearest neighbors (k is a positive integer, typically small). If k = 1, then the object is simply assigned to the class of that single nearest neighbor.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    Swift AI

    Swift AI

    The Swift machine learning library

    ...Swift AI includes a collection of common tools used for artificial intelligence and scientific applications. A flexible, fully-connected neural network with support for deep learning. Optimized specifically for Apple hardware, using advanced parallel processing techniques. We've created some example projects to demonstrate the usage of Swift AI. Each resides in their own repository and can be built with little or no configuration. Each module now contains its own documentation. We recommend that you read the docs carefully for detailed instructions on using the various components of Swift AI. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 12
    EEG Seizure Prediction

    EEG Seizure Prediction

    Seizure prediction from EEG data using machine learning

    The Kaggle-EEG project is a machine learning solution developed for seizure prediction from EEG data, achieving 3rd place in the Kaggle/University of Melbourne Seizure Prediction competition. The repository processes EEG data to predict seizures by training machine learning models, specifically using SVM (Support Vector Machine) and RUS Boosted Tree ensemble models. The framework processes EEG data into features, trains models, and outputs predictions, handling temporal data to ensure accuracy.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13

    Microsoft-Azures-Basic-C--Pull

    This is a simple C# Program that uses Microsoft Azures pull

    This is a simple C# Program that uses Microsoft Azures. In the image you will find an example of a program I created using the script. It's very quick and easy to setup. I provide some screenshots and tips on where to place what where. After you have placed in your Microsoft Azures API Key and Postman Client and Body. You now be able to insert inputs via code like the example in my image(s).
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    nunn

    nunn

    This is an implementation of a machine learning library in C++17

    nunn is a collection of ML algorithms and related examples written in modern C++17.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    Python Machine Learning book

    Python Machine Learning book

    The book code repository and info resource

    ...I aim to explain all the underlying concepts, tell you everything you need to know in terms of best practices and caveats, and we will put those concepts into action mainly using NumPy, scikit-learn, and Theano. This is not yet just another "this is how scikit-learn works" book. its aim is to explain how Machine Learning works, tell you everything you need to know in terms of best practices and caveats, and then we will learn how to put those concepts into action using NumPy, scikit-learn, Theano and so on. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    node-opencv

    node-opencv

    OpenCV Bindings for node.js

    OpenCV bindings for Node.js. OpenCV is the defacto computer vision library - by interfacing with it natively in node, we get powerful real time vision in js. People are using node-opencv to fly control quadrocoptors, detect faces from webcam images and annotate video streams. If you're using it for something cool, I'd love to hear about it! You'll need OpenCV 2.3.1 or newer installed before installing node-opencv. You can use opencv to read in image files. Supported formats are in the OpenCV docs, but jpgs etc are supported. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    Density-ratio based clustering

    Density-ratio based clustering

    Discovering clusters with varying densities

    This site provides the source code of two approaches for density-ratio based clustering, used for discovering clusters with varying densities. One approach is to modify a density-based clustering algorithm to do density-ratio based clustering by using its density estimator to compute density-ratio. The other approach involves rescaling the given dataset only. An existing density-based clustering algorithm, which is applied to the rescaled dataset, can find all clusters with varying densities that would otherwise impossible had the same algorithm been applied to the unscaled dataset. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 18
    BagaturChess

    BagaturChess

    Java Chess Engine

    This is UCI Chess Engine writen in Java. Since version 1.4 (inclusive) the project was moved to https://github.com/bagaturchess/Bagatur
    Downloads: 1 This Week
    Last Update:
    See Project
  • 19
    Mass-based dissimilarity

    Mass-based dissimilarity

    A data dependent dissimilarity measure based on mass estimation.

    This software calculates the mass-based dissimilarity matrix for data mining algorithms relying on a distance measure. References: Overcoming Key Weaknesses of Distance-based Neighbourhood Methods using a Data Dependent Dissimilarity Measure. KDD 2016 http://dx.doi.org/10.1145/2939672.2939779 The source code, presentation slide and poster are attached under "Files". The presentation video in KDD 2016 is published on https://youtu.be/eotD_-SuEoo . Since this software is licensed under the Gnu General Public license GPLv3, any derivative work must be licensed under the GPL as well. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20

    GA-EoC

    GeneticAlgorithm-based search for Heterogeneous Ensemble Combinations

    ...This is even worst in case of both the high dimensional and class-imbalanced datasets. To overcome the limitations of class-imbalanced data, we split the dataset using a random sub-sampling to balance them. Then, we apply the (alpha,beta)-k feature set method to select a better subset of features and combine their outputs to get a consolidated feature set for classifier training. To enhance classification performances, we propose an ensemble of classifiers that combine the classification outputs of base classifiers using the simplest and largely used majority voting approach. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21

    jLDADMM

    A Java package for the LDA and DMM topic models

    ...It provides implementations of the Latent Dirichlet Allocation topic model and the one-topic-per-document Dirichlet Multinomial Mixture model (i.e. mixture of unigrams), using collapsed Gibbs sampling. In addition, jLDADMM supplies a document clustering evaluation to compare topic models. See the usage of jLDADMM in its website at http://jldadmm.sourceforge.net/
    Downloads: 2 This Week
    Last Update:
    See Project
  • 22
    Scene
    Scene is a computer vision framework that performs background subtraction and object tracking, using two traditional algorithms and three more recent algorithms based on neural networks and fuzzy classification rules. For each detected object, Scene sends TUIO messages to one or several client applications. The present release features GPU accelerated versions of all the background subtraction methods and morphological post processing of the object blobs with dilation and erosion filters, implemented in OpenCL. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 23
    ...The second package includes source and object files of DEMass-DBSCAN to be used with the WEKA system. 3. The third package DEMassBayes includes the source and object files of a Bayesian classifier using DEMass. DEMassBayes.7z has jar file to be used with WEKA and a readme file listing parameters used. The source files are included in DEMassBayes_Source.7z. 4. The four package is MassTER includes source and JAR file to be used with WEKA system..
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24

    DE-HEoC

    DE-based Weight Optimisation for Heterogeneous Ensemble

    ...Average Matthews Correlation Coefficient (MCC) score, calculated over 10-fold cross-validation, has been used as the measure of quality of an ensemble. DE/rand/1/bin algorithm has been utilised to maximize the average MCC score calculated using 10-fold cross-validation on training dataset. The voting weights of base classifiers are optimized for the heterogeneous ensemble of classifiers aiming to attain better generalization performances on testing datasets.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    Adaptive Gaussian Filtering

    Adaptive Gaussian Filtering

    Machine learning with Gaussian kernels.

    Libagf is a machine learning library that includes adaptive kernel density estimators using Gaussian kernels and k-nearest neighbours. Operations include statistical classification, interpolation/non-linear regression and pdf estimation. For statistical classification there is a borders training feature for creating fast and general pre-trained models that nonetheless return the conditional probabilities. Libagf also includes clustering algorithms as well as comparison and validation routines. ...
    Downloads: 0 This Week
    Last Update:
    See Project