Showing 513 open source projects for "compiler python linux"

View related business solutions
  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    The database for AI-powered applications.

    MongoDB Atlas is the developer-friendly database used to build, scale, and run gen AI and LLM-powered apps—without needing a separate vector database. Atlas offers built-in vector search, global availability across 115+ regions, and flexible document modeling. Start building AI apps faster, all in one place.
    Start Free
  • Enterprise-grade ITSM, for every business Icon
    Enterprise-grade ITSM, for every business

    Give your IT, operations, and business teams the ability to deliver exceptional services—without the complexity.

    Freshservice is an intuitive, AI-powered platform that helps IT, operations, and business teams deliver exceptional service without the usual complexity. Automate repetitive tasks, resolve issues faster, and provide seamless support across the organization. From managing incidents and assets to driving smarter decisions, Freshservice makes it easy to stay efficient and scale with confidence.
    Try it Free
  • 1
    Bootstrap Your Own Latent (BYOL)

    Bootstrap Your Own Latent (BYOL)

    Usable Implementation of "Bootstrap Your Own Latent" self-supervised

    Practical implementation of an astoundingly simple method for self-supervised learning that achieves a new state-of-the-art (surpassing SimCLR) without contrastive learning and having to designate negative pairs. This repository offers a module that one can easily wrap any image-based neural network (residual network, discriminator, policy network) to immediately start benefitting from unlabelled image data. There is now new evidence that batch normalization is key to making this technique...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    Lightweight' GAN

    Lightweight' GAN

    Implementation of 'lightweight' GAN, proposed in ICLR 2021

    Implementation of 'lightweight' GAN proposed in ICLR 2021, in Pytorch. The main contribution of the paper is a skip-layer excitation in the generator, paired with autoencoding self-supervised learning in the discriminator. Quoting the one-line summary "converge on single gpu with few hours' training, on 1024 resolution sub-hundred images". Augmentation is essential for Lightweight GAN to work effectively in a low data setting. You can test and see how your images will be augmented before...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    Diffgram

    Diffgram

    Training data (data labeling, annotation, workflow) for all data types

    From ingesting data to exploring it, annotating it, and managing workflows. Diffgram is a single application that will improve your data labeling and bring all aspects of training data under a single roof. Diffgram is world’s first truly open source training data platform that focuses on giving its users an unlimited experience. This is aimed to reduce your data labeling bills and increase your Training Data Quality. Training Data is the art of supervising machines through data. This...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    Asteroid

    Asteroid

    The PyTorch-based audio source separation toolkit for researchers

    The PyTorch-based audio source separation toolkit for researchers. Pytorch-based audio source separation toolkit that enables fast experimentation on common datasets. It comes with a source code thats supports a large range of datasets and architectures, and a set of recipes to reproduce some important papers. Building blocks are thought and designed to be seamlessly plugged together. Filterbanks, encoders, maskers, decoders and losses are all common building blocks that can be combined in a...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Crowdtesting That Delivers | Testeum Icon
    Crowdtesting That Delivers | Testeum

    Unfixed bugs delaying your launch? Test with real users globally – check it out for free, results in days.

    Testeum connects your software, app, or website to a worldwide network of testers, delivering detailed feedback in under 48 hours. Ensure functionality and refine UX on real devices, all at a fraction of traditional costs. Trusted by startups and enterprises alike, our platform streamlines quality assurance with actionable insights.
    Click to perfect your product now.
  • 5
    talos

    talos

    Hyperparameter Optimization for TensorFlow, Keras and PyTorch

    Talos radically changes the ordinary Keras, TensorFlow (tf.keras), and PyTorch workflow by fully automating hyperparameter tuning and model evaluation. Talos exposes Keras and TensorFlow (tf.keras) and PyTorch functionality entirely and there is no new syntax or templates to learn. Talos is made for data scientists and data engineers that want to remain in complete control of their TensorFlow (tf.keras) and PyTorch models, but are tired of mindless parameter hopping and confusing...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    Deepchecks

    Deepchecks

    Test Suites for validating ML models & data

    Deepchecks is the leading tool for testing and for validating your machine learning models and data, and it enables doing so with minimal effort. Deepchecks accompany you through various validation and testing needs such as verifying your data’s integrity, inspecting its distributions, validating data splits, evaluating your model and comparing between different models. While you’re in the research phase, and want to validate your data, find potential methodological problems, and/or validate...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    High-Level Training Utilities Pytorch

    High-Level Training Utilities Pytorch

    High-level training, data augmentation, and utilities for Pytorch

    Contains significant improvements, bug fixes, and additional support. Get it from the releases, or pull the master branch. This package provides a few things. A high-level module for Keras-like training with callbacks, constraints, and regularizers. Comprehensive data augmentation, transforms, sampling, and loading. Utility tensor and variable functions so you don't need numpy as often. Have any feature requests? Submit an issue! I'll make it happen. Specifically, any data augmentation, data...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    Determined

    Determined

    Determined, deep learning training platform

    The fastest and easiest way to build deep learning models. Distributed training without changing your model code. Determined takes care of provisioning machines, networking, data loading, and fault tolerance. Build more accurate models faster with scalable hyperparameter search, seamlessly orchestrated by Determined. Use state-of-the-art algorithms and explore results with our hyperparameter search visualizations. Interpret your experiment results using the Determined UI and TensorBoard, and...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    PyTorch Forecasting

    PyTorch Forecasting

    Time series forecasting with PyTorch

    PyTorch Forecasting aims to ease state-of-the-art time series forecasting with neural networks for both real-world cases and research alike. The goal is to provide a high-level API with maximum flexibility for professionals and reasonable defaults for beginners. A time series dataset class that abstracts handling variable transformations, missing values, randomized subsampling, multiple history lengths, etc. A base model class that provides basic training of time series models along with...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Build Securely on Azure with Proven Frameworks Icon
    Build Securely on Azure with Proven Frameworks

    Lay a foundation for success with Tested Reference Architectures developed by Fortinet’s experts. Learn more in this white paper.

    Moving to the cloud brings new challenges. How can you manage a larger attack surface while ensuring great network performance? Turn to Fortinet’s Tested Reference Architectures, blueprints for designing and securing cloud environments built by cybersecurity experts. Learn more and explore use cases in this white paper.
    Download Now
  • 10
    MMAction2

    MMAction2

    OpenMMLab's Next Generation Video Understanding Toolbox and Benchmark

    OpenMMLab's next generation video understanding toolbox and benchmark. MMAction2 is an open-source toolbox for video understanding based on PyTorch. It is a part of the OpenMMLab project. Modular design: We decompose a video understanding framework into different components. One can easily construct a customized video understanding framework by combining different modules. Support four major video understanding tasks: MMAction2 implements various algorithms for multiple video understanding...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    Colossal-AI

    Colossal-AI

    Making large AI models cheaper, faster and more accessible

    The Transformer architecture has improved the performance of deep learning models in domains such as Computer Vision and Natural Language Processing. Together with better performance come larger model sizes. This imposes challenges to the memory wall of the current accelerator hardware such as GPU. It is never ideal to train large models such as Vision Transformer, BERT, and GPT on a single GPU or a single machine. There is an urgent demand to train models in a distributed environment....
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    IVY

    IVY

    The Unified Machine Learning Framework

    Take any code that you'd like to include. For example, an existing TensorFlow model, and some useful functions from both PyTorch and NumPy libraries. Choose any framework for writing your higher-level pipeline, including data loading, distributed training, analytics, logging, visualization etc. Choose any backend framework which should be used under the hood, for running this entire pipeline. Choose the most appropriate device or combination of devices for your needs. DeepMind releases an...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    Imagen - Pytorch

    Imagen - Pytorch

    Implementation of Imagen, Google's Text-to-Image Neural Network

    Implementation of Imagen, Google's Text-to-Image Neural Network that beats DALL-E2, in Pytorch. It is the new SOTA for text-to-image synthesis. Architecturally, it is actually much simpler than DALL-E2. It consists of a cascading DDPM conditioned on text embeddings from a large pre-trained T5 model (attention network). It also contains dynamic clipping for improved classifier-free guidance, noise level conditioning, and a memory-efficient unit design. It appears neither CLIP nor prior...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    The SpeechBrain Toolkit

    The SpeechBrain Toolkit

    A PyTorch-based Speech Toolkit

    SpeechBrain is an open-source and all-in-one conversational AI toolkit. It is designed to be simple, extremely flexible, and user-friendly. Competitive or state-of-the-art performance is obtained in various domains. SpeechBrain supports state-of-the-art methods for end-to-end speech recognition, including models based on CTC, CTC+attention, transducers, transformers, and neural language models relying on recurrent neural networks and transformers. Speaker recognition is already deployed in a...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    Pandas Profiling

    Pandas Profiling

    Create HTML profiling reports from pandas DataFrame objects

    pandas-profiling generates profile reports from a pandas DataFrame. The pandas df.describe() function is handy yet a little basic for exploratory data analysis. pandas-profiling extends pandas DataFrame with df.profile_report(), which automatically generates a standardized univariate and multivariate report for data understanding. High correlation warnings, based on different correlation metrics (Spearman, Pearson, Kendall, Cramér’s V, Phik). Most common categories (uppercase, lowercase,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    Datasets

    Datasets

    Hub of ready-to-use datasets for ML models

    Datasets is a library for easily accessing and sharing datasets, and evaluation metrics for Natural Language Processing (NLP), computer vision, and audio tasks. Load a dataset in a single line of code, and use our powerful data processing methods to quickly get your dataset ready for training in a deep learning model. Backed by the Apache Arrow format, process large datasets with zero-copy reads without any memory constraints for optimal speed and efficiency. We also feature a deep...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    PyG

    PyG

    Graph Neural Network Library for PyTorch

    PyG (PyTorch Geometric) is a library built upon PyTorch to easily write and train Graph Neural Networks (GNNs) for a wide range of applications related to structured data. It consists of various methods for deep learning on graphs and other irregular structures, also known as geometric deep learning, from a variety of published papers. In addition, it consists of easy-to-use mini-batch loaders for operating on many small and single giant graphs, multi GPU-support, DataPipe support,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    SageMaker Inference Toolkit

    SageMaker Inference Toolkit

    Serve machine learning models within a Docker container

    Serve machine learning models within a Docker container using Amazon SageMaker. Amazon SageMaker is a fully managed service for data science and machine learning (ML) workflows. You can use Amazon SageMaker to simplify the process of building, training, and deploying ML models. Once you have a trained model, you can include it in a Docker container that runs your inference code. A container provides an effectively isolated environment, ensuring a consistent runtime regardless of where the...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    TensorFlow Model Garden

    TensorFlow Model Garden

    Models and examples built with TensorFlow

    The TensorFlow Model Garden is a repository with a number of different implementations of state-of-the-art (SOTA) models and modeling solutions for TensorFlow users. We aim to demonstrate the best practices for modeling so that TensorFlow users can take full advantage of TensorFlow for their research and product development. To improve the transparency and reproducibility of our models, training logs on TensorBoard.dev are also provided for models to the extent possible though not all models...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    Katib

    Katib

    Automated Machine Learning on Kubernetes

    Katib is a Kubernetes-native project for automated machine learning (AutoML). Katib supports Hyperparameter Tuning, Early Stopping and Neural Architecture Search. Katib is a project that is agnostic to machine learning (ML) frameworks. It can tune hyperparameters of applications written in any language of the users’ choice and natively supports many ML frameworks, such as TensorFlow, Apache MXNet, PyTorch, XGBoost, and others. Katib can perform training jobs using any Kubernetes Custom...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    The Operator Splitting QP Solver

    The Operator Splitting QP Solver

    The Operator Splitting QP Solver

    OSQP uses a specialized ADMM-based first-order method with custom sparse linear algebra routines that exploit structure in problem data. The algorithm is absolutely division-free after the setup and it requires no assumptions on problem data (the problem only needs to be convex). It just works. OSQP has an easy interface to generate customized embeddable C code with no memory manager required. OSQP supports many interfaces including C/C++, Fortran, Matlab, Python, R, Julia, Rust.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    audioFlux

    audioFlux

    A library for audio and music analysis, feature extraction

    A library for audio and music analysis, and feature extraction. Can be used for deep learning, pattern recognition, signal processing, bioinformatics, statistics, finance, etc. audioflux is a deep learning tool library for audio and music analysis, feature extraction. It supports dozens of time-frequency analysis transformation methods and hundreds of corresponding time-domain and frequency-domain feature combinations. It can be provided to deep learning networks for training and is used to...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    OpenMLDB

    OpenMLDB

    OpenMLDB is an open-source machine learning database

    ... and inference. Real-time features are essential for many machine learning applications, such as real-time personalized recommendations and risk analytics. However, a feature engineering script developed by data scientists (Python scripts in most cases) cannot be directly deployed into production for online inference because it usually cannot meet the engineering requirements, such as low latency, high throughput and high availability.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    Tribuo

    Tribuo

    Tribuo - A Java machine learning library

    Tribuo* is a machine learning library written in Java. It provides tools for classification, regression, clustering, model development, and more. It provides a unified interface to many popular third-party ML libraries like xgboost and liblinear. With interfaces to native code, Tribuo also makes it possible to deploy models trained by Python libraries (e.g. scikit-learn, and pytorch) in a Java program. Tribuo is licensed under Apache 2.0. Remove the uncertainty around exactly which artifacts...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    ViZDoom

    ViZDoom

    Doom-based AI research platform for reinforcement learning

    ViZDoom allows developing AI bots that play Doom using only the visual information (the screen buffer). It is primarily intended for research in machine visual learning, and deep reinforcement learning, in particular. ViZDoom is based on ZDOOM, the most popular modern source-port of DOOM. This means compatibility with a huge range of tools and resources that can be used to create custom scenarios, availability of detailed documentation of the engine and tools and support of Doom community....
    Downloads: 0 This Week
    Last Update:
    See Project
Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.