Showing 20 open source projects for "component"

View related business solutions
  • Context for your AI agents Icon
    Context for your AI agents

    Crawl websites, sync to vector databases, and power RAG applications. Pre-built integrations for LLM pipelines and AI assistants.

    Build data pipelines that feed your AI models and agents without managing infrastructure. Crawl any website, transform content, and push directly to your preferred vector store. Use 10,000+ tools for RAG applications, AI assistants, and real-time knowledge bases. Monitor site changes, trigger workflows on new data, and keep your AIs fed with fresh, structured information. Cloud-native, API-first, and free to start until you need to scale.
    Try for free
  • Next-Gen Encryption for Post-Quantum Security | CLEAR by Quantum Knight Icon
    Next-Gen Encryption for Post-Quantum Security | CLEAR by Quantum Knight

    Lock Down Any Resource, Anywhere, Anytime

    CLEAR by Quantum Knight is a FIPS-140-3 validated encryption SDK engineered for enterprises requiring top-tier security. Offering robust post-quantum cryptography, CLEAR secures files, streaming media, databases, and networks with ease across over 30 modern platforms. Its compact design, smaller than a single smartphone image, ensures maximum efficiency and low energy consumption.
    Learn More
  • 1
    Kubeflow pipelines

    Kubeflow pipelines

    Machine Learning Pipelines for Kubeflow

    ...A pipeline is a description of an ML workflow, including all of the components in the workflow and how they combine in the form of a graph. The pipeline includes the definition of the inputs (parameters) required to run the pipeline and the inputs and outputs of each component. A pipeline component is a self-contained set of user code, packaged as a Docker image, that performs one step in the pipeline. For example, a component can be responsible for data preprocessing, data transformation, model training, and so on.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    AutoMLPipeline.jl

    AutoMLPipeline.jl

    Package that makes it trivial to create and evaluate machine learning

    ...It leverages on the built-in macro programming features of Julia to symbolically process, and manipulate pipeline expressions and makes it easy to discover optimal structures for machine learning regression and classification. To illustrate, here is a pipeline expression and evaluation of a typical machine learning workflow that extracts numerical features (numf) for ica (Independent Component Analysis) and pca (Principal Component Analysis) transformations, respectively, concatenated with the hot-bit encoding (ohe) of categorical features (catf) of a given data for rf (Random Forest) modeling.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    OnnxStream

    OnnxStream

    Lightweight inference library for ONNX files, written in C++

    ...So I decided to write a super small and hackable inference library specifically focused on minimizing memory consumption: OnnxStream. OnnxStream is based on the idea of decoupling the inference engine from the component responsible for providing the model weights, which is a class derived from WeightsProvider. A WeightsProvider specialization can implement any type of loading, caching, and prefetching of the model parameters.
    Downloads: 7 This Week
    Last Update:
    See Project
  • 4
    ml.js

    ml.js

    Machine learning tools in JavaScript

    This library is a compilation of the tools developed in the mljs organization. It is mainly maintained for use in the browser. If you are working with Node.js, you might prefer to add to your dependencies only the libraries that you need, as they are usually published to npm more often. We prefix all our npm package names with ml- (eg. ml-matrix) so they are easy to find.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Fully managed relational database service for MySQL, PostgreSQL, and SQL Server Icon
    Fully managed relational database service for MySQL, PostgreSQL, and SQL Server

    Focus on your application, and leave the database to us

    Cloud SQL manages your databases so you don't have to, so your business can run without disruption. It automates all your backups, replication, patches, encryption, and storage capacity increases to give your applications the reliability, scalability, and security they need.
    Try for free
  • 5
    Linfa

    Linfa

    A Rust machine learning framework

    linfa aims to provide a comprehensive toolkit to build Machine Learning applications with Rust. Kin in spirit to Python's scikit-learn, it focuses on common preprocessing tasks and classical ML algorithms for your everyday ML tasks.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    Qlib

    Qlib

    Qlib is an AI-oriented quantitative investment platform

    ...With Qlib, users can easily try their ideas to create better Quant investment strategies. At the module level, Qlib is a platform that consists of above components. The components are designed as loose-coupled modules and each component could be used stand-alone.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 7
    TFX

    TFX

    TFX is an end-to-end platform for deploying production ML pipelines

    ...Both the components themselves and the integrations with orchestration systems can be extended. TFX components interact with an ML Metadata backend that keeps a record of component runs, input and output artifacts, and runtime configuration. This metadata backend enables advanced functionality like experiment tracking or warm starting/resuming ML models from previous runs.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    Tiny CUDA Neural Networks

    Tiny CUDA Neural Networks

    Lightning fast C++/CUDA neural network framework

    ...Most notably, it contains a lightning-fast "fully fused" multi-layer perceptron (technical paper), a versatile multiresolution hash encoding (technical paper), as well as support for various other input encodings, losses, and optimizers. We provide a sample application where an image function (x,y) -> (R,G,B) is learned. The fully fused MLP component of this framework requires a very large amount of shared memory in its default configuration. It will likely only work on an RTX 3090, an RTX 2080 Ti, or high-end enterprise GPUs. Lower-end cards must reduce the n_neurons parameter or use the CutlassMLP (better compatibility but slower) instead. tiny-cuda-nn comes with a PyTorch extension that allows using the fast MLPs and input encodings from within a Python context. ...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 9
    Axon

    Axon

    Nx-powered Neural Networks

    ...Training API – An API for quickly training models, inspired by PyTorch Ignite. Axon provides abstractions that enable easy integration while maintaining a level of separation between each component. You should be able to use any of the APIs without dependencies on others. By decoupling the APIs, Axon gives you full control over each aspect of creating and training a neural network. At the lowest-level, Axon consists of a number of modules with functional implementations of common methods in deep learning.
    Downloads: 0 This Week
    Last Update:
    See Project
  • AI-First Supply Chain Management Icon
    AI-First Supply Chain Management

    Supply chain managers, executives, and businesses seeking AI-powered solutions to optimize planning, operations, and decision-making across the supply

    Logility is a market-leading provider of AI-first supply chain management solutions engineered to help organizations build sustainable digital supply chains that improve people’s lives and the world we live in. The company’s approach is designed to reimagine supply chain planning by shifting away from traditional “what happened” processes to an AI-driven strategy that combines the power of humans and machines to predict and be ready for what’s coming. Logility’s fully integrated, end-to-end platform helps clients know faster, turn uncertainty into opportunity, and transform the supply chain from a cost center to an engine for growth.
    Learn More
  • 10
    SSD in PyTorch 1.0

    SSD in PyTorch 1.0

    High quality, fast, modular reference implementation of SSD in PyTorch

    ...Multi-GPU training and inference: We use DistributedDataParallel, you can train or test with arbitrary GPU(s), the training schema will change accordingly. Add your own modules without pain. We abstract backbone, Detector, BoxHead, BoxPredictor, etc. You can replace every component with your own code without changing the code base. For example, You can add EfficientNet as the backbone, just add efficient_net.py (ALREADY ADDED) and register it, specific it in the config file, It's done! Smooth and enjoyable training procedure: we save the state of model, optimizer, scheduler, training iter, you can stop your training and resume training exactly from the save point without change your training CMD.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    GNNPCSAFT

    GNNPCSAFT

    Smart Thermodynamic Modeling with Graph Neural Networks

    The GNNPCSAFT app is an implementation of our project that focuses on using Graph Neural Networks (GNN) to estimate the pure-component parameters of the Equation of State PC-SAFT. We developed this app so the scientific community can access the model's results easily. In this app, the estimated pure-component parameters can be used to calculate thermodynamic properties and compare them with experimental data from the ThermoML Archive. To install the GNNPCSAFT app, download the appropriate latest release from the Files, unzip the file, and run the executable for your operating system (Linux or Windows). ...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 12
    GNNPCSAFT Web App

    GNNPCSAFT Web App

    Smart Thermodynamic Modeling with Graph Neural Networks

    The GNNPCSAFT Web App is an implementation of our project that focuses on using Graph Neural Networks (GNN) to estimate the pure-component parameters of the Equation of State PC-SAFT. We developed this app so the scientific community can access the model's results easily. In this app, the estimated pure-component parameters can be used to calculate thermodynamic properties and compare them with experimental data from the ThermoML Archive. More info on github repository.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 13
    SOD

    SOD

    An Embedded Computer Vision & Machine Learning Library

    SOD is an embedded, modern cross-platform computer vision and machine learning software library that expose a set of APIs for deep-learning, advanced media analysis & processing including real-time, multi-class object detection and model training on embedded systems with limited computational resource and IoT devices. SOD was built to provide a common infrastructure for computer vision applications and to accelerate the use of machine perception in open source as well as commercial products....
    Downloads: 1 This Week
    Last Update:
    See Project
  • 14
    sense2vec

    sense2vec

    Contextually-keyed word vectors

    sense2vec (Trask et. al, 2015) is a nice twist on word2vec that lets you learn more interesting and detailed word vectors. This library is a simple Python implementation for loading, querying and training sense2vec models. For more details, check out our blog post. To explore the semantic similarities across all Reddit comments of 2015 and 2019, see the interactive demo.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    MLPACK is a C++ machine learning library with emphasis on scalability, speed, and ease-of-use. Its aim is to make machine learning possible for novice users by means of a simple, consistent API, while simultaneously exploiting C++ language features to provide maximum performance and flexibility for expert users. * More info + downloads: https://mlpack.org * Git repo: https://github.com/mlpack/mlpack
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    Flashlight library

    Flashlight library

    A C++ standalone library for machine learning

    ...In a single repository, Flashlight provides apps for research across multiple domains. Flashlight can be broken down into several components as described above. Each component can be incrementally built by specifying the correct build options. Flashlight is most-easily built and installed with vcpkg. Both the CUDA and CPU backends are supported with vcpkg. For either backend, first, install Intel MKL. Flashlight app binaries are also built for the selected features and are installed into the vcpkg install tree's tools directory.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    BerryNet

    BerryNet

    Deep learning gateway on Raspberry Pi and other edge devices

    This project turns edge devices such as Raspberry Pi into an intelligent gateway with deep learning running on it. No internet connection is required, everything is done locally on the edge device itself. Further, multiple edge devices can create a distributed AIoT network. At DT42, we believe that bringing deep learning to edge devices is the trend towards the future. It not only saves costs of data transmission and storage but also makes devices able to respond according to the events...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    Intel neon

    Intel neon

    Intel® Nervana™ reference deep learning framework

    ...We want to highlight that neon v2.0.0+ has been optimized for much better performance on CPUs by enabling Intel Math Kernel Library (MKL). The DNN (Deep Neural Networks) component of MKL that is used by neon is provided free of charge and downloaded automatically as part of the neon installation. The gpu backend is selected by default, so the above command is equivalent to if a compatible GPU resource is found on the system. The Intel Math Kernel Library takes advantages of the parallelization and vectorization capabilities of Intel Xeon and Xeon Phi systems. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19

    GI-ICA

    Matlab implementation of GI-ICA and PEGI

    This is a matlab implementation of the GI-ICA algorithm for ICA in the presence of an additive Gaussian noise. The algorithm is discussed in the paper "Fast Algorithms for Gaussian Noise Invariant Independent Component Analysis" by James Voss, Luis Rademacher, and Mikhail Belkin.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    Open Pandora's Box

    Open Pandora's Box

    Pandora is an artificial intelligent web based bot

    Pandora is an artificial intelligent web based bot written in Java. Pandora is a component based AI architecture including, database memory, XML, voice, voice rec, chat, IRC, HTTP, Wiktionary, Freebase, consciousness, language, GUI, applet, web, jsp, Android
    Downloads: 2 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next