Showing 301 open source projects for "using"

View related business solutions
  • Vibes don’t ship, Retool does Icon
    Vibes don’t ship, Retool does

    Start from a prompt and build production-ready apps on your data—with security, permissions, and compliance built in.

    Vibe coding tools create cool demos, but Retool helps you build software your company can actually use. Generate internal apps that connect directly to your data—deployed in your cloud with enterprise security from day one. Build dashboards, admin panels, and workflows with granular permissions already in place. Stop prototyping and ship on a platform that actually passes security review.
    Build apps that ship
  • Atera all-in-one platform IT management software with AI agents Icon
    Atera all-in-one platform IT management software with AI agents

    Ideal for internal IT departments or managed service providers (MSPs)

    Atera’s AI agents don’t just assist, they act. From detection to resolution, they handle incidents and requests instantly, taking your IT management from automated to autonomous.
    Learn More
  • 1
    OpenNMT-tf

    OpenNMT-tf

    Neural machine translation and sequence learning using TensorFlow

    OpenNMT is an open-source ecosystem for neural machine translation and neural sequence learning. OpenNMT-tf is a general-purpose sequence learning toolkit using TensorFlow 2. While neural machine translation is the main target task, it has been designed to more generally support sequence-to-sequence mapping, sequence tagging, sequence classification, language modeling. Models are described with code to allow training custom architectures and overriding default behavior. For example, the following instance defines a sequence-to-sequence model with 2 concatenated input features, a self-attentional encoder, and an attentional RNN decoder sharing its input and output embeddings. ...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 2
    hloc

    hloc

    Visual localization made easy with hloc

    ...This codebase won the indoor/outdoor localization challenges at CVPR 2020 and ECCV 2020, in combination with SuperGlue, our graph neural network for feature matching. We provide step-by-step guides to localize with Aachen, InLoc, and to generate reference poses for your own data using SfM. Just download the datasets and you're reading to go! The notebook pipeline_InLoc.ipynb shows the steps for localizing with InLoc. It's much simpler since a 3D SfM model is not needed. We show in pipeline_SfM.ipynb how to run 3D reconstruction for an unordered set of images. This generates reference poses, and a nice sparse 3D model suitable for localization with the same pipeline as Aachen.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 3
    FlubuCore

    FlubuCore

    A cross platform build and deployment automation system

    "FlubuCore - Fluent Builder Core" is a cross-platform build and deployment automation system. You can define your build and deployment scripts in C# using an intuitive fluent interface. This gives you code completion, IntelliSense, debugging, FlubuCore custom analyzers, and native access to the whole .NET ecosystem inside of your scripts. FlubuCore offers a .net (core) console application that uses power of roslyn to compile and execute scripts. Intuitive and easy to learn. C#, fluent interface, and IntelliSense make even the most complex script creation a breeze. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    Lightning Flash

    Lightning Flash

    Flash enables you to easily configure and run complex AI recipes

    ...For example, for image segmentation where your data is stored in folders, you would use the from_folders method of the SemanticSegmentationData class. Our tasks come loaded with pre-trained backbones and (where applicable) heads. You can view the available backbones to use with your task using available_backbones. With Flash, swapping among 40+ optimizers and 15 + schedulers recipes are simple.
    Downloads: 7 This Week
    Last Update:
    See Project
  • Find Hidden Risks in Windows Task Scheduler Icon
    Find Hidden Risks in Windows Task Scheduler

    Free diagnostic script reveals configuration issues, error patterns, and security risks. Instant HTML report.

    Windows Task Scheduler might be hiding critical failures. Download the free JAMS diagnostic tool to uncover problems before they impact production—get a color-coded risk report with clear remediation steps in minutes.
    Download Free Tool
  • 5
    Lightning Bolts

    Lightning Bolts

    Toolbox of models, callbacks, and datasets for AI/ML researchers

    Bolts package provides a variety of components to extend PyTorch Lightning, such as callbacks & datasets, for applied research and production. Torch ORT converts your model into an optimized ONNX graph, speeding up training & inference when using NVIDIA or AMD GPUs. We can introduce sparsity during fine-tuning with SparseML, which ultimately allows us to leverage the DeepSparse engine to see performance improvements at inference time.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    CausalNex

    CausalNex

    A Python library that helps data scientists to infer causation

    CausalNex is a Python library that uses Bayesian Networks to combine machine learning and domain expertise for causal reasoning. You can use CausalNex to uncover structural relationships in your data, learn complex distributions, and observe the effect of potential interventions.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    Transformer Reinforcement Learning X

    Transformer Reinforcement Learning X

    A repo for distributed training of language models with Reinforcement

    trlX is a distributed training framework designed from the ground up to focus on fine-tuning large language models with reinforcement learning using either a provided reward function or a reward-labeled dataset. Training support for Hugging Face models is provided by Accelerate-backed trainers, allowing users to fine-tune causal and T5-based language models of up to 20B parameters, such as facebook/opt-6.7b, EleutherAI/gpt-neox-20b, and google/flan-t5-xxl. For models beyond 20B parameters, trlX provides NVIDIA NeMo-backed trainers that leverage efficient parallelism techniques to scale effectively.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    TensorFlow Ranking

    TensorFlow Ranking

    Learning to rank in TensorFlow

    ...We envision that this library will provide a convenient open platform for hosting and advancing state-of-the-art ranking models based on deep learning techniques, and thus facilitate both academic research and industrial applications. We provide a demo, with no installation required, to get started on using TF-Ranking. This demo runs on a colaboratory notebook, an interactive Python environment. Using sparse features and embeddings in TF-Ranking.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    TF2DeepFloorplan

    TF2DeepFloorplan

    TF2 Deep FloorPlan Recognition using a Multi-task Network

    TF2 Deep FloorPlan Recognition using a Multi-task Network with Room-boundary-Guided Attention. Enable tensorboard, quantization, flask, tflite, docker, github actions and google colab. This repo contains a basic procedure to train and deploy the DNN model suggested by the paper 'Deep Floor Plan Recognition using a Multi-task Network with Room-boundary-Guided Attention'.
    Downloads: 2 This Week
    Last Update:
    See Project
  • AestheticsPro Medical Spa Software Icon
    AestheticsPro Medical Spa Software

    Our new software release will dramatically improve your medspa business performance while enhancing the customer experience

    AestheticsPro is the most complete Aesthetics Software on the market today. HIPAA Cloud Compliant with electronic charting, integrated POS, targeted marketing and results driven reporting; AestheticsPro delivers the tools you need to manage your medical spa business. It is our mission To Provide an All-in-One Cutting Edge Software to the Aesthetics Industry.
    Learn More
  • 10

    Lumi-HSP

    This is an AI language model that can predict Heart failure or stroke

    Using thsi AI model, you can predict the chances of heart stroke and heart failure. HIGLIGHTS : 1. Accuracy of this model is 95% 2. This model uses the powerful Machine Learning algorithm "GradientBoosting" for predicting the outcomes. 3. An easy to use model and accessible to everyone.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    TensorFlow Documentation

    TensorFlow Documentation

    TensorFlow documentation

    An end-to-end platform for machine learning. TensorFlow makes it easy to create ML models that can run in any environment. Learn how to use the intuitive APIs through interactive code samples.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 12
    sense2vec

    sense2vec

    Contextually-keyed word vectors

    sense2vec (Trask et. al, 2015) is a nice twist on word2vec that lets you learn more interesting and detailed word vectors. This library is a simple Python implementation for loading, querying and training sense2vec models. For more details, check out our blog post. To explore the semantic similarities across all Reddit comments of 2015 and 2019, see the interactive demo.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    OGB

    OGB

    Benchmark datasets, data loaders, and evaluators for graph machine

    The Open Graph Benchmark (OGB) is a collection of realistic, large-scale, and diverse benchmark datasets for machine learning on graphs. OGB datasets are automatically downloaded, processed, and split using the OGB Data Loader. The model performance can be evaluated using the OGB Evaluator in a unified manner. OGB is a community-driven initiative in active development. We expect the benchmark datasets to evolve. OGB provides a diverse set of challenging and realistic benchmark datasets that are of varying sizes and cover a variety graph machine learning tasks, including prediction of node, link, and graph properties. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    DIG

    DIG

    A library for graph deep learning research

    ...If you are working or plan to work on research in graph deep learning, DIG enables you to develop your own methods within our extensible framework, and compare with current baseline methods using common datasets and evaluation metrics without extra efforts. It includes unified implementations of data interfaces, common algorithms, and evaluation metrics for several advanced tasks. Our goal is to enable researchers to easily implement and benchmark algorithms.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    T81 558

    T81 558

    Applications of Deep Neural Networks

    Deep learning is a group of exciting new technologies for neural networks. Through a combination of advanced training techniques and neural network architectural components, it is now possible to create neural networks that can handle tabular data, images, text, and audio as both input and output. Deep learning allows a neural network to learn hierarchies of information in a way that is like the function of the human brain. This course will introduce the student to classic neural network...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    LightFM

    LightFM

    A Python implementation of LightFM, a hybrid recommendation algorithm

    LightFM is a Python implementation of a number of popular recommendation algorithms for both implicit and explicit feedback, including efficient implementation of BPR and WARP ranking losses. It's easy to use, fast (via multithreaded model estimation), and produces high-quality results. It also makes it possible to incorporate both item and user metadata into the traditional matrix factorization algorithms. It represents each user and item as the sum of the latent representations of their...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    Keras Attention Mechanism

    Keras Attention Mechanism

    Attention mechanism Implementation for Keras

    Many-to-one attention mechanism for Keras. We demonstrate that using attention yields a higher accuracy on the IMDB dataset. We consider two LSTM networks: one with this attention layer and the other one with a fully connected layer. Both have the same number of parameters for a fair comparison (250K). The attention is expected to be the highest after the delimiters. An overview of the training is shown below, where the top represents the attention map and the bottom the ground truth. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    DeepFaceLive

    DeepFaceLive

    Real-time face swap for PC streaming or video calls

    You can swap your face from a webcam or the face in the video using trained face models. There is also a Face Animator module in DeepFaceLive app. You can control a static face picture using video or your own face from the camera. The quality is not the best, and requires fine face matching and tuning parameters for every face pair, but enough for funny videos and memes or real-time streaming at 25 fps using 35 TFLOPS GPU.
    Downloads: 506 This Week
    Last Update:
    See Project
  • 19
    Sockeye

    Sockeye

    Sequence-to-sequence framework, focused on Neural Machine Translation

    ...We maintain backwards compatibility with MXNet models of version 2.3.x with 3.0.x. If MXNet 2.x is installed, Sockeye can run both with PyTorch or MXNet. All models trained with 2.3.x (using MXNet) can be converted to models running with PyTorch using the converter CLI (sockeye.mx_to_pt).
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    Knet

    Knet

    Koç University deep learning framework

    ...If you would like to try it on your own computer, please follow the instructions on Installation. If you would like to try working with a GPU and do not have access to one, take a look at Using Amazon AWS or Using Microsoft Azure. If you find a bug, please open a GitHub issue. If you don't have access to a GPU machine, but would like to experiment with one, Amazon Web Services is a possible solution. I have prepared a machine image (AMI) with everything you need to run Knet. Here are step-by-step instructions for launching a GPU instance with a Knet image (the screens may have changed slightly since this writing).
    Downloads: 1 This Week
    Last Update:
    See Project
  • 21
    BERTScore

    BERTScore

    BERT score for text generation

    ...We now support about 130 models (see this spreadsheet for their correlations with human evaluation). Currently, the best model is Microsoft/debate-large-online, please consider using it instead of the default roberta-large in order to have the best correlation with human evaluation.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 22
    Merlion

    Merlion

    A Machine Learning Framework for Time Series Intelligence

    Merlion is a Python library for time series intelligence. It provides an end-to-end machine learning framework that includes loading and transforming data, building and training models, post-processing model outputs, and evaluating model performance. It supports various time series learning tasks, including forecasting, anomaly detection, and change point detection for both univariate and multivariate time series. This library aims to provide engineers and researchers a one-stop solution to...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    CodeContests

    CodeContests

    Large dataset of coding contests designed for AI and ML model training

    ...Each problem includes structured metadata, problem descriptions, paired input/output test cases, and multiple correct and incorrect solutions in various programming languages. The dataset is distributed in Riegeli format using Protocol Buffers, with separate training, validation, and test splits for reproducible machine learning experiments.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 24
    UnionML

    UnionML

    Build and deploy machine learning microservices

    ...UnionML is an open-source Python framework built on top of Flyte™, unifying the complex ecosystem of ML tools into a single interface. Combine the tools that you love using a simple, standardized API so you can stop writing so much boilerplate and focus on what matters: the data and the models that learn from them. Fit the rich ecosystem of tools and frameworks into a common protocol for machine learning. Using industry-standard machine learning methods, implement endpoints for fetching data, training models, serving predictions (and much more) to write a complete ML stack in one place. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    CleanRL

    CleanRL

    High-quality single file implementation of Deep Reinforcement Learning

    CleanRL is a Deep Reinforcement Learning library that provides high-quality single-file implementation with research-friendly features. The implementation is clean and simple, yet we can scale it to run thousands of experiments using AWS Batch. CleanRL is not a modular library and therefore it is not meant to be imported. At the cost of duplicate code, we make all implementation details of a DRL algorithm variant easy to understand, so CleanRL comes with its own pros and cons. You should consider using CleanRL if you want to 1) understand all implementation details of an algorithm's variant or 2) prototype advanced features that other modular DRL libraries do not support (CleanRL has minimal lines of code so it gives you great debugging experience and you don't have to do a lot of subclassing like sometimes in modular DRL libraries).
    Downloads: 0 This Week
    Last Update:
    See Project