Showing 544 open source projects for "python source"

View related business solutions
  • Easily Host LLMs and Web Apps on Cloud Run Icon
    Easily Host LLMs and Web Apps on Cloud Run

    Run everything from popular models with on-demand NVIDIA L4 GPUs to web apps without infrastructure management.

    Run frontend and backend services, batch jobs, host LLMs, and queue processing workloads without the need to manage infrastructure. Cloud Run gives you on-demand GPU access for hosting LLMs and running real-time AI—with 5-second cold starts and automatic scale-to-zero so you only pay for actual usage. New customers get $300 in free credit to start.
    Try Cloud Run Free
  • Ship AI Apps Faster with Vertex AI Icon
    Ship AI Apps Faster with Vertex AI

    Go from idea to deployed AI app without managing infrastructure. Vertex AI offers one platform for the entire AI development lifecycle.

    Ship AI apps and features faster with Vertex AI—your end-to-end AI platform. Access Gemini 3 and 200+ foundation models, fine-tune for your needs, and deploy with enterprise-grade MLOps. Build chatbots, agents, or custom models. New customers get $300 in free credit.
    Try Vertex AI Free
  • 1
    Haiku Sonnet for JAX

    Haiku Sonnet for JAX

    JAX-based neural network library

    Haiku is a library built on top of JAX designed to provide simple, composable abstractions for machine learning research. JAX is a numerical computing library that combines NumPy, automatic differentiation, and first-class GPU/TPU support. Haiku is a simple neural network library for JAX that enables users to use familiar object-oriented programming models while allowing full access to JAX's pure function transformations. Haiku provides two core tools: a module abstraction, hk.Module, and a...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    pomegranate

    pomegranate

    Fast, flexible and easy to use probabilistic modelling in Python

    pomegranate is a library for probabilistic modeling defined by its modular implementation and treatment of all models as the probability distributions they are. The modular implementation allows one to easily drop normal distributions into a mixture model to create a Gaussian mixture model just as easily as dropping a gamma and a Poisson distribution into a mixture model to create a heterogeneous mixture. But that's not all! Because each model is treated as a probability distribution,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    TorchRec

    TorchRec

    Pytorch domain library for recommendation systems

    TorchRec is a PyTorch domain library built to provide common sparsity & parallelism primitives needed for large-scale recommender systems (RecSys). It allows authors to train models with large embedding tables sharded across many GPUs. Parallelism primitives that enable easy authoring of large, performant multi-device/multi-node models using hybrid data-parallelism/model-parallelism. The TorchRec sharder can shard embedding tables with different sharding strategies including data-parallel,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    Pytorch-toolbelt

    Pytorch-toolbelt

    PyTorch extensions for fast R&D prototyping and Kaggle farming

    A pytorch-toolbelt is a Python library with a set of bells and whistles for PyTorch for fast R&D prototyping and Kaggle farming. Easy model building using flexible encoder-decoder architecture. Modules: CoordConv, SCSE, Hypercolumn, Depthwise separable convolution and more. GPU-friendly test-time augmentation TTA for segmentation and classification. GPU-friendly inference on huge (5000x5000) images. Every-day common routines (fix/restore random seed, filesystem utils, metrics). Losses:...
    Downloads: 1 This Week
    Last Update:
    See Project
  • Cut Cloud Costs with Google Compute Engine Icon
    Cut Cloud Costs with Google Compute Engine

    Save up to 91% with Spot VMs and get automatic sustained-use discounts. One free VM per month, plus $300 in credits.

    Save on compute costs with Compute Engine. Reduce your batch jobs and workload bill 60-91% with Spot VMs. Compute Engine's committed use offers customers up to 70% savings through sustained use discounts. Plus, you get one free e2-micro VM monthly and $300 credit to start.
    Try Compute Engine
  • 5
    PyTorch Geometric Temporal

    PyTorch Geometric Temporal

    Spatiotemporal Signal Processing with Neural Machine Learning Models

    The library consists of various dynamic and temporal geometric deep learning, embedding, and Spatio-temporal regression methods from a variety of published research papers. Moreover, it comes with an easy-to-use dataset loader, train-test splitter and temporal snaphot iterator for dynamic and temporal graphs. The framework naturally provides GPU support. It also comes with a number of benchmark datasets from the epidemiological forecasting, sharing economy, energy production and web traffic...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 6
    PySyft

    PySyft

    Data science on data without acquiring a copy

    Most software libraries let you compute over the information you own and see inside of machines you control. However, this means that you cannot compute on information without first obtaining (at least partial) ownership of that information. It also means that you cannot compute using machines without first obtaining control over those machines. This is very limiting to human collaboration and systematically drives the centralization of data, because you cannot work with a bunch of data...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 7
    Open Notebook

    Open Notebook

    An Open Source implementation of Notebook LM with more flexibility

    Open Notebook is an open-source, privacy-focused alternative to Google’s Notebook LM that gives users full control over their research and AI workflows. Designed to be self-hosted, it ensures complete data sovereignty by keeping your content local or within your own infrastructure. The platform supports 16+ AI providers—including OpenAI, Anthropic, Ollama, Google, and LM Studio—allowing flexible model choice and cost optimization. Open Notebook enables users to organize and analyze...
    Downloads: 5 This Week
    Last Update:
    See Project
  • 8
    pmdarima

    pmdarima

    Statistical library designed to fill the void in Python's time series

    A statistical library designed to fill the void in Python's time series analysis capabilities, including the equivalent of R's auto.arima function.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    torchtext

    torchtext

    Data loaders and abstractions for text and NLP

    We recommend Anaconda as a Python package management system. Please refer to pytorch.org for the details of PyTorch installation. LTS versions are distributed through a different channel than the other versioned releases. Alternatively, you might want to use the Moses tokenizer port in SacreMoses (split from NLTK). You have to install SacreMoses. To build torchtext from source, you need git, CMake and C++11 compiler such as g++.
    Downloads: 0 This Week
    Last Update:
    See Project
  • AI-generated apps that pass security review Icon
    AI-generated apps that pass security review

    Stop waiting on engineering. Build production-ready internal tools with AI—on your company data, in your cloud.

    Retool lets you generate dashboards, admin panels, and workflows directly on your data. Type something like “Build me a revenue dashboard on my Stripe data” and get a working app with security, permissions, and compliance built in from day one. Whether on our cloud or self-hosted, create the internal software your team needs without compromising enterprise standards or control.
    Try Retool free
  • 10
    Albumentations

    Albumentations

    Fast image augmentation library and an easy-to-use wrapper

    Albumentations is a computer vision tool that boosts the performance of deep convolutional neural networks. Albumentations is a Python library for fast and flexible image augmentations. Albumentations efficiently implements a rich variety of image transform operations that are optimized for performance, and does so while providing a concise, yet powerful image augmentation interface for different computer vision tasks, including object classification, segmentation, and detection....
    Downloads: 1 This Week
    Last Update:
    See Project
  • 11
    RecBole

    RecBole

    A unified, comprehensive and efficient recommendation library

    ...We implement more than 100 commonly used recommendation algorithms and provide formatted copies of 28 recommendation datasets. We support a series of widely adopted evaluation protocols or settings for testing and comparing recommendation algorithms. RecBole is developed based on Python and PyTorch for reproducing and developing recommendation algorithms in a unified, comprehensive and efficient framework for research purpose. It can be installed from pip, conda and source, and is easy to use. We have implemented more than 100 recommender system models, covering four common recommender system categories in RecBole and eight toolkits of RecBole2.0, including General Recommendation, Sequential Recommendation, Context-aware Recommendation, and Knowledge-based Recommendation and sub-packages.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    DeepLabCut

    DeepLabCut

    Implementation of DeepLabCut

    ...DeepLabCut is an open-source Python package for animal pose estimation.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    Thinc

    Thinc

    A refreshing functional take on deep learning

    Thinc is a lightweight deep learning library that offers an elegant, type-checked, functional-programming API for composing models, with support for layers defined in other frameworks such as PyTorch, TensorFlow and MXNet. You can use Thinc as an interface layer, a standalone toolkit or a flexible way to develop new models. Previous versions of Thinc have been running quietly in production in thousands of companies, via both spaCy and Prodigy. We wrote the new version to let users compose,...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 14
    SHAP

    SHAP

    A game theoretic approach to explain the output of ml models

    SHAP (SHapley Additive exPlanations) is a game theoretic approach to explain the output of any machine learning model. It connects optimal credit allocation with local explanations using the classic Shapley values from game theory and their related extensions. While SHAP can explain the output of any machine learning model, we have developed a high-speed exact algorithm for tree ensemble methods. Fast C++ implementations are supported for XGBoost, LightGBM, CatBoost, scikit-learn and pyspark...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 15
    whisper-timestamped

    whisper-timestamped

    Multilingual Automatic Speech Recognition with word-level timestamps

    Multilingual Automatic Speech Recognition with word-level timestamps and confidence. Whisper is a set of multi-lingual, robust speech recognition models trained by OpenAI that achieve state-of-the-art results in many languages. Whisper models were trained to predict approximate timestamps on speech segments (most of the time with 1-second accuracy), but they cannot originally predict word timestamps. This repository proposes an implementation to predict word timestamps and provide a more...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 16
    Diffgram

    Diffgram

    Training data (data labeling, annotation, workflow) for all data types

    From ingesting data to exploring it, annotating it, and managing workflows. Diffgram is a single application that will improve your data labeling and bring all aspects of training data under a single roof. Diffgram is world’s first truly open source training data platform that focuses on giving its users an unlimited experience. This is aimed to reduce your data labeling bills and increase your Training Data Quality. Training Data is the art of supervising machines through data. This...
    Downloads: 5 This Week
    Last Update:
    See Project
  • 17
    Qlib

    Qlib

    Qlib is an AI-oriented quantitative investment platform

    Qlib is an AI-oriented quantitative investment platform, which aims to realize the potential, empower the research, and create the value of AI technologies in quantitative investment. With Qlib, you can easily try your ideas to create better Quant investment strategies. An increasing number of SOTA Quant research works/papers are released in Qlib. With Qlib, users can easily try their ideas to create better Quant investment strategies. At the module level, Qlib is a platform that consists of...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 18
    AIF360

    AIF360

    A comprehensive set of fairness metrics for datasets

    This extensible open source toolkit can help you examine, report, and mitigate discrimination and bias in machine learning models throughout the AI application lifecycle. We invite you to use and improve it. The AI Fairness 360 toolkit is an extensible open-source library containing techniques developed by the research community to help detect and mitigate bias in machine learning models throughout the AI application lifecycle.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    FLAML

    FLAML

    A fast library for AutoML and tuning

    FLAML is a lightweight Python library that finds accurate machine learning models automatically, efficiently and economically. It frees users from selecting learners and hyperparameters for each learner. For common machine learning tasks like classification and regression, it quickly finds quality models for user-provided data with low computational resources. It supports both classical machine learning models and deep neural networks. It is easy to customize or extend. Users can find their...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    ClearML

    ClearML

    Streamline your ML workflow

    ClearML is an open source platform that automates and simplifies developing and managing machine learning solutions for thousands of data science teams all over the world. It is designed as an end-to-end MLOps suite allowing you to focus on developing your ML code & automation, while ClearML ensures your work is reproducible and scalable. The ClearML Python Package for integrating ClearML into your existing scripts by adding just two lines of code, and optionally extending your experiments and other workflows with ClearML powerful and versatile set of classes and methods. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    TensorFlow Probability

    TensorFlow Probability

    Probabilistic reasoning and statistical analysis in TensorFlow

    ...TFP is open source and available on GitHub. Tools to build deep probabilistic models, including probabilistic layers and a `JointDistribution` abstraction. Variational inference and Markov chain Monte Carlo. A wide selection of probability distributions and bijectors. Optimizers such as Nelder-Mead, BFGS, and SGLD.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    Advanced Solutions Lab

    Advanced Solutions Lab

    This repos contains notebooks for the Advanced Solutions Lab

    This repository contains Jupyter notebooks meant to be run on Vertex AI. This is maintained by Google Cloud’s Advanced Solutions Lab (ASL) team. Vertex AI is the next-generation AI Platform on the Google Cloud Platform. The material covered in this repo will take a software engineer with no exposure to machine learning to an advanced level.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    AtomAI

    AtomAI

    Deep and Machine Learning for Microscopy

    AtomAI is a Pytorch-based package for deep and machine-learning analysis of microscopy data that doesn't require any advanced knowledge of Python or machine learning. The intended audience is domain scientists with a basic understanding of how to use NumPy and Matplotlib. It was developed by Maxim Ziatdinov at Oak Ridge National Lab. The purpose of the AtomAI is to provide an environment that bridges the instrument-specific libraries and general physical analysis by enabling the seamless...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    TensorRT Backend For ONNX

    TensorRT Backend For ONNX

    ONNX-TensorRT: TensorRT backend for ONNX

    Parses ONNX models for execution with TensorRT. Development on the main branch is for the latest version of TensorRT 8.4.1.5 with full dimensions and dynamic shape support. For previous versions of TensorRT, refer to their respective branches. Building INetwork objects in full dimensions mode with dynamic shape support requires calling the C++ and Python API. Current supported ONNX operators are found in the operator support matrix. For building within docker, we recommend using and setting...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    Llama Cookbook

    Llama Cookbook

    Solve end to end problems using Llama model family

    The Llama Cookbook is the official Meta LLaMA guide for inference, fine‑tuning, RAG, and multi-step use-cases. It offers recipes, code samples, and integration examples across provider platforms (WhatsApp, SQL, long context workflows), enabling developers to quickly harness LLaMA models
    Downloads: 0 This Week
    Last Update:
    See Project
MongoDB Logo MongoDB