Showing 197 open source projects for "framework-arduinoststm32"

View related business solutions
  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    The database for AI-powered applications.

    MongoDB Atlas is the developer-friendly database used to build, scale, and run gen AI and LLM-powered apps—without needing a separate vector database. Atlas offers built-in vector search, global availability across 115+ regions, and flexible document modeling. Start building AI apps faster, all in one place.
    Start Free
  • Keep company data safe with Chrome Enterprise Icon
    Keep company data safe with Chrome Enterprise

    Protect your business with AI policies and data loss prevention in the browser

    Make AI work your way with Chrome Enterprise. Block unapproved sites and set custom data controls that align with your company's policies.
    Download Chrome
  • 1
    Java Neural Network Framework Neuroph
    Neuroph is lightweight Java Neural Network Framework which can be used to develop common neural network architectures. Small number of basic classes which correspond to basic NN concepts, and GUI editor makes it easy to learn and use.
    Leader badge
    Downloads: 148 This Week
    Last Update:
    See Project
  • 2

    SwaNN

    PSO for neural networks

    SwaNN is a basic framework for neural networks based on particle swarm optimization (using the Python package PySwarms (https://pyswarms.readthedocs.io/en/latest/). The zip file contains the main programs in SwaNN.py and around 30 examples : - classification - regression - time series forecasting I need some help for class building (I am not an expert in Python nor in OOP), if somebody is interested in it...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    TensorFlow Object Counting API

    TensorFlow Object Counting API

    The TensorFlow Object Counting API is an open source framework

    The TensorFlow Object Counting API is an open source framework built on top of TensorFlow and Keras that makes it easy to develop object counting systems. Please contact if you need professional object detection & tracking & counting project with super high accuracy and reliability! You can train TensorFlow models with your own training data to built your own custom object counter system!
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    BytePS

    BytePS

    A high performance and generic framework for distributed DNN training

    BytePS is a high-performance and generally distributed training framework. It supports TensorFlow, Keras, PyTorch, and MXNet, and can run on either TCP or RDMA networks. BytePS outperforms existing open-sourced distributed training frameworks by a large margin. For example, on BERT-large training, BytePS can achieve ~90% scaling efficiency with 256 GPUs (see below), which is much higher than Horovod+NCCL.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Cloud-based help desk software with ServoDesk Icon
    Cloud-based help desk software with ServoDesk

    Full access to Enterprise features. No credit card required.

    What if You Could Automate 90% of Your Repetitive Tasks in Under 30 Days? At ServoDesk, we help businesses like yours automate operations with AI, allowing you to cut service times in half and increase productivity by 25% - without hiring more staff.
    Try ServoDesk for free
  • 5
    CrypTen

    CrypTen

    A framework for Privacy Preserving Machine Learning

    ...Its design mirrors PyTorch’s modular and library-based structure, enabling flexible experimentation, debugging, and model development. The framework supports both encryption and decryption of tensors and operations such as addition and multiplication over encrypted values. Although not yet production-ready, CrypTen focuses on advancing real-world secure ML applications, such as training and inference over private datasets, without exposing sensitive data.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    ChainerRL

    ChainerRL

    ChainerRL is a deep reinforcement learning library

    ChainerRL (this repository) is a deep reinforcement learning library that implements various state-of-the-art deep reinforcement algorithms in Python using Chainer, a flexible deep learning framework. PFRL is the PyTorch analog of ChainerRL. ChainerRL has a set of accompanying visualization tools in order to aid developers' ability to understand and debug their RL agents. With this visualization tool, the behavior of ChainerRL agents can be easily inspected from a browser UI. Environments that support the subset of OpenAI Gym's interface (reset and step methods) can be used.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    MMSkeleton

    MMSkeleton

    A OpenMMLAB toolbox for human pose estimation, skeleton-based action

    ...It is a part of the open-mmlab project in the charge of Multimedia Laboratory, CUHK. MMSkeleton is developed on our research project ST-GCN. MMSkeleton provides a flexible framework for organizing codes and projects systematically, with the ability to extend to various tasks and scale up to complex deep models. MMSkeleton addresses to multiple tasks in human understanding. Build a custom skeleton-based dataset. Create your own applications. MMSkeleton is an OpenMMLAB toolbox for human pose estimation, skeleton-based action recognition, and action synthesis.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    nGraph

    nGraph

    nGraph has moved to OpenVINO

    Frameworks using nGraph Compiler stack to execute workloads have shown up to 45X performance boost when compared to native framework implementations. We've also seen performance boosts running workloads that are not included on the list of Validated workloads, thanks to nGraph's powerful subgraph pattern matching. Additionally, we have integrated nGraph with PlaidML to provide deep learning performance acceleration on Intel, nVidia, & AMD GPUs. nGraph Compiler aims to accelerate developing AI workloads using any deep learning framework and deploying to a variety of hardware targets. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    X-DeepLearning

    X-DeepLearning

    An industrial deep learning framework for high-dimension sparse data

    X-DeepLearning (XDL for short) is a complete set of deep optimization solutions for high-dimensional sparse data scenarios (such as advertising/recommendation/search, etc.). XDL version 1.2 has been released recently. Performance optimization for large batch/low concurrency scenarios, 50-100% performance improvement in such scenarios. Storage and communication optimization, parameters are automatically allocated globally without manual intervention, and requests are merged to completely...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • 10
    Coach

    Coach

    Enables easy experimentation with state of the art algorithms

    Coach is a python framework that models the interaction between an agent and an environment in a modular way. With Coach, it is possible to model an agent by combining various building blocks, and training the agent on multiple environments. The available environments allow testing the agent in different fields such as robotics, autonomous driving, games and more.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    TenorSpace.js

    TenorSpace.js

    Neural network 3D visualization framework

    TensorSpace is a neural network 3D visualization framework built using TensorFlow.js, Three.js and Tween.js. TensorSpace provides Keras-like APIs to build deep learning layers, load pre-trained models, and generate a 3D visualization in the browser. From TensorSpace, it is intuitive to learn what the model structure is, how the model is trained and how the model predicts the results based on the intermediate information.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    automl-gs

    automl-gs

    Provide an input CSV and a target field to predict, generate a model

    ...No black box: you can see exactly how the data is processed, and how the model is constructed, and you can make tweaks as necessary. automl-gs is an AutoML tool which, unlike Microsoft's NNI, Uber's Ludwig, and TPOT, offers a zero code/model definition interface to getting an optimized model and data transformation pipeline in multiple popular ML/DL frameworks, with minimal Python dependencies (pandas + scikit-learn + your framework of choice). automl-gs is designed for citizen data scientists and engineers without a deep statistical background under the philosophy that you don't need to know any modern data preprocessing and machine learning engineering techniques to create a powerful prediction workflow.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    Oryx

    Oryx

    Lambda architecture on Apache Spark, Apache Kafka for real-time

    Oryx 2 is a realization of the lambda architecture built on Apache Spark and Apache Kafka, but with specialization for real-time large-scale machine learning. It is a framework for building applications but also includes packaged, end-to-end applications for collaborative filtering, classification, regression and clustering. The application is written in Java, using Apache Spark, Hadoop, Tomcat, Kafka, Zookeeper and more. Configuration uses a single Typesafe Config config file, wherein applications configure an entire deployment of the system. ...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 14
    Skater

    Skater

    Python library for model interpretation/explanations

    Skater is a unified framework to enable Model Interpretation for all forms of the model to help one build an Interpretable machine learning system often needed for real-world use-cases(** we are actively working towards to enabling faithful interpretability for all forms models). It is an open-source python library designed to demystify the learned structures of a black box model both globally(inference on the basis of a complete data set) and locally(inference about an individual prediction). ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    CFNet

    CFNet

    Training a Correlation Filter end-to-end allows lightweight networks

    CFNet is the official implementation of End-to-end representation learning for Correlation Filter based tracking (CVPR 2017) by Luca Bertinetto, Jack Valmadre, João F. Henriques, Andrea Vedaldi, and Philip H. S. Torr. The framework combines correlation filters with deep convolutional neural networks to create an efficient and accurate visual object tracker. Unlike traditional correlation filter trackers that rely on hand-crafted features, CFNet learns feature representations directly from data in an end-to-end fashion. This allows the tracker to be both computationally efficient and robust to appearance changes such as scale, rotation, and illumination variations. ...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 16
    SLING

    SLING

    A natural language frame semantics parser

    ...We do not yet have a full system that can extract facts from arbitrary text, but we have built a number of the subsystems needed for such a system. The SLING frame store is our basic framework for building and manipulating frame semantic graph structures. The Wiki flow pipeline can take a raw dump of Wikidata and convert this into one big frame graph.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    Tensor Comprehensions

    Tensor Comprehensions

    A domain specific language to express machine learning workloads

    ...TC additionally provides basic integration with Caffe2 and PyTorch. We provide more details in our paper on arXiv. This library is designed to be highly portable, machine-learning-framework agnostic and only requires a simple tensor library with memory allocation, offloading, and synchronization capabilities.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    PyTorch Book

    PyTorch Book

    PyTorch tutorials and fun projects including neural talk

    This is the corresponding code for the book "The Deep Learning Framework PyTorch: Getting Started and Practical", but it can also be used as a standalone PyTorch Getting Started Guide and Tutorial. The current version of the code is based on pytorch 1.0.1, if you want to use an older version please git checkout v0.4or git checkout v0.3. Legacy code has better python2/python3 compatibility, CPU/GPU compatibility test.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    Intel neon

    Intel neon

    Intel® Nervana™ reference deep learning framework

    neon is Intel's reference deep learning framework committed to best performance on all hardware. Designed for ease of use and extensibility. See the new features in our latest release. We want to highlight that neon v2.0.0+ has been optimized for much better performance on CPUs by enabling Intel Math Kernel Library (MKL). The DNN (Deep Neural Networks) component of MKL that is used by neon is provided free of charge and downloaded automatically as part of the neon installation. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    NNVM

    NNVM

    Open deep learning compiler stack for cpu, gpu

    The vision of the Apache NNVM Project is to host a diverse community of experts and practitioners in machine learning, compilers, and systems architecture to build an accessible, extensible, and automated open-source framework that optimizes current and emerging machine learning models for any hardware platform. Compilation of deep learning models into minimum deployable modules. Infrastructure to automatically generates and optimize models on more backend with better performance. Compilation and minimal runtimes commonly unlock ML workloads on existing hardware. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    Accord.NET Framework

    Accord.NET Framework

    Scientific computing, machine learning and computer vision for .NET

    The Accord.NET Framework provides machine learning, mathematics, statistics, computer vision, computer audition, and several scientific computing related methods and techniques to .NET. The project is compatible with the .NET Framework. NET Standard, .NET Core, and Mono.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    Deep Learning with Keras and Tensorflow

    Deep Learning with Keras and Tensorflow

    Introduction to Deep Neural Networks with Keras and Tensorflow

    Introduction to Deep Neural Networks with Keras and Tensorflow. To date tensorflow comes in two different packages, namely tensorflow and tensorflow-gpu, whether you want to install the framework with CPU-only or GPU support, respectively. NVIDIA Drivers and CuDNN must be installed and configured before hand. Please refer to the official Tensorflow documentation for further details. Since version 0.9 Theano introduced the libgpuarray in the stable release (it was previously only available in the development version). The goal of libgpuarray is (from the documentation) make a common GPU ndarray (n dimensions array) that can be reused by all projects that is as future proof as possible, while keeping it easy to use for simple need/quick test. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    Caffe2

    Caffe2

    Caffe2 is a lightweight, modular, and scalable deep learning framework

    Caffe2 is a lightweight, modular, and scalable deep learning framework. Building on the original Caffe, Caffe2 is designed with expression, speed, and modularity in mind. Caffe2 is a deep learning framework that provides an easy and straightforward way for you to experiment with deep learning and leverage community contributions of new models and algorithms. You can bring your creations to scale using the power of GPUs in the cloud or to the masses on mobile with Caffe2’s cross-platform libraries. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    Caffe

    Caffe

    A fast open framework for deep learning

    Caffe is an open source deep learning framework that’s focused on expression, speed and modularity. It’s got an expressive architecture that encourages application and innovation, and extensible code that’s great for active development. Caffe also offers great speed, capable of processing over 60M images per day with a single NVIDIA K40 GPU. It’s arguably one of the fastest convnet implementations around.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 25
    EEG Seizure Prediction

    EEG Seizure Prediction

    Seizure prediction from EEG data using machine learning

    ...The repository processes EEG data to predict seizures by training machine learning models, specifically using SVM (Support Vector Machine) and RUS Boosted Tree ensemble models. The framework processes EEG data into features, trains models, and outputs predictions, handling temporal data to ensure accuracy.
    Downloads: 0 This Week
    Last Update:
    See Project