Showing 118 open source projects for "python neural"

View related business solutions
  • Get Avast Free Antivirus | Your top-rated shield against malware and online scams Icon
    Get Avast Free Antivirus | Your top-rated shield against malware and online scams

    Boost your PC's defense against cyberthreats and web-based scams.

    Our antivirus software scans for security and performance issues and helps you to fix them instantly. It also protects you in real time by analyzing unknown files before they reach your desktop PC or laptop — all for free.
    Free Download
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • 1
    PORORO

    PORORO

    Platform of neural models for natural language processing

    pororo performs Natural Language Processing and Speech-related tasks. It is easy to solve various subtasks in the natural language and speech processing field by simply passing the task name. Recognized speech sentences using the trained model. Currently English, Korean and Chinese support. Get vector or find similar words and entities from pretrained model using Wikipedia.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    PyTorch SimCLR

    PyTorch SimCLR

    PyTorch implementation of SimCLR: A Simple Framework

    For quite some time now, we know about the benefits of transfer learning in Computer Vision (CV) applications. Nowadays, pre-trained Deep Convolution Neural Networks (DCNNs) are the first go-to pre-solutions to learn a new task. These large models are trained on huge supervised corpora, like the ImageNet. And most important, their features are known to adapt well to new problems. This is particularly interesting when annotated training data is scarce. In situations like this, we take the models...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 3
    TensorLayer

    TensorLayer

    Deep learning and reinforcement learning library for scientists

    TensorLayer is a novel TensorFlow-based deep learning and reinforcement learning library designed for researchers and engineers. It provides an extensive collection of customizable neural layers to build advanced AI models quickly, based on this, the community open-sourced mass tutorials and applications. TensorLayer is awarded the 2017 Best Open Source Software by the ACM Multimedia Society. This project can also be found at OpenI and Gitee. 3.0.0 has been pre-released, the current version...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    Awesome AI-ML-DL

    Awesome AI-ML-DL

    Awesome Artificial Intelligence, Machine Learning and Deep Learning

    Awesome Artificial Intelligence, Machine Learning and Deep Learning as we learn it. Study notes and a curated list of awesome resources of such topics. This repo is dedicated to engineers, developers, data scientists and all other professions that take interest in AI, ML, DL and related sciences. To make learning interesting and to create a place to easily find all the necessary material. Please contribute, watch, star, fork and share the repo with others in your community.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Powering the best of the internet | Fastly Icon
    Powering the best of the internet | Fastly

    Fastly's edge cloud platform delivers faster, safer, and more scalable sites and apps to customers.

    Ensure your websites, applications and services can effortlessly handle the demands of your users with Fastly. Fastly’s portfolio is designed to be highly performant, personalized and secure while seamlessly scaling to support your growth.
    Try for free
  • 5
    Neural Networks Collection

    Neural Networks Collection

    Neural Networks Collection

    This project implements in C++ a bunch of known Neural Networks. So far the project implements: LVQ in several variants, SOM in several variants, Hopfield network and Perceptron. Other neural network types are planned, but not implemented yet. The project can run in two modes: command line tool and Python 7.2 extension. Currently, Python version appears more functional, as it allows easy interaction with algorithms developed by other people.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 6
    NLP Architect

    NLP Architect

    A model library for exploring state-of-the-art deep learning

    NLP Architect is an open-source Python library for exploring state-of-the-art deep learning topologies and techniques for optimizing Natural Language Processing and Natural Language Understanding neural networks. The library includes our past and ongoing NLP research and development efforts as part of Intel AI Lab. NLP Architect is designed to be flexible for adding new models, neural network components, data handling methods, and for easy training and running models. NLP Architect is a model...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    TFLearn

    TFLearn

    Deep learning library featuring a higher-level API for TensorFlow

    TFlearn is a modular and transparent deep learning library built on top of Tensorflow. It was designed to provide a higher-level API to TensorFlow in order to facilitate and speed up experimentations while remaining fully transparent and compatible with it. Easy-to-use and understand high-level API for implementing deep neural networks, with tutorials and examples. Fast prototyping through highly modular built-in neural network layers, regularizers, optimizers, and metrics. Full transparency...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    fastNLP

    fastNLP

    fastNLP: A Modularized and Extensible NLP Framework

    fastNLP is a lightweight framework for natural language processing (NLP), the goal is to quickly implement NLP tasks and build complex models. A unified Tabular data container simplifies the data preprocessing process. Built-in Loader and Pipe for multiple datasets, eliminating the need for preprocessing code. Various convenient NLP tools, such as Embedding loading (including ELMo and BERT), intermediate data cache, etc.. Provide a variety of neural network components and recurrence models...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    EfficientNet Keras

    EfficientNet Keras

    Implementation of EfficientNet model. Keras and TensorFlow Keras

    This repository contains a Keras (and TensorFlow Keras) reimplementation of EfficientNet, a lightweight convolutional neural network architecture achieving state-of-the-art accuracy with an order of magnitude fewer parameters and FLOPS, on both ImageNet and five other commonly used transfer learning datasets. Convolutional Neural Networks (ConvNets) are commonly developed at a fixed resource budget, and then scaled up for better accuracy if more resources are available. In this paper, we...
    Downloads: 0 This Week
    Last Update:
    See Project
  • MongoDB Atlas | Run databases anywhere Icon
    MongoDB Atlas | Run databases anywhere

    Ensure the availability of your data with coverage across AWS, Azure, and GCP on MongoDB Atlas—the multi-cloud database for every enterprise.

    MongoDB Atlas allows you to build and run modern applications across 125+ cloud regions, spanning AWS, Azure, and Google Cloud. Its multi-cloud clusters enable seamless data distribution and automated failover between cloud providers, ensuring high availability and flexibility without added complexity.
    Learn More
  • 10
    Forecasting Best Practices

    Forecasting Best Practices

    Time Series Forecasting Best Practices & Examples

    ... creating implementations from scratch, we draw from existing state-of-the-art libraries and build additional utilities around processing and featuring the data, optimizing and evaluating models, and scaling up to the cloud. The examples and best practices are provided as Python Jupyter notebooks and R markdown files and a library of utility functions.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    AdaNet

    AdaNet

    Fast and flexible AutoML with learning guarantees

    AdaNet is a TensorFlow framework for fast and flexible AutoML with learning guarantees. AdaNet is a lightweight TensorFlow-based framework for automatically learning high-quality models with minimal expert intervention. AdaNet builds on recent AutoML efforts to be fast and flexible while providing learning guarantees. Importantly, AdaNet provides a general framework for not only learning a neural network architecture but also for learning to the ensemble to obtain even better models. At each...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    NLP Best Practices

    NLP Best Practices

    Natural Language Processing Best Practices & Examples

    In recent years, natural language processing (NLP) has seen quick growth in quality and usability, and this has helped to drive business adoption of artificial intelligence (AI) solutions. In the last few years, researchers have been applying newer deep learning methods to NLP. Data scientists started moving from traditional methods to state-of-the-art (SOTA) deep neural network (DNN) algorithms which use language models pretrained on large text corpora. This repository contains examples...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    textgenrnn

    textgenrnn

    Easily train your own text-generating neural network

    With textgenrnn you can easily train your own text-generating neural network of any size and complexity on any text dataset with a few lines of code. A modern neural network architecture that utilizes new techniques as attention-weighting and skip-embedding to accelerate training and improve model quality. Train on and generate text at either the character-level or word-level. Configure RNN size, the number of RNN layers, and whether to use bidirectional RNNs. Train on any generic input text...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14

    SwaNN

    PSO for neural networks

    SwaNN is a basic framework for neural networks based on particle swarm optimization (using the Python package PySwarms (https://pyswarms.readthedocs.io/en/latest/). The zip file contains the main programs in SwaNN.py and around 30 examples : - classification - regression - time series forecasting I need some help for class building (I am not an expert in Python nor in OOP), if somebody is interested in it... In Google Colab : https://colab.research.google.com/drive...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    Deep Learning with PyTorch

    Deep Learning with PyTorch

    Latest techniques in deep learning and representation learning

    ... (a minimal version of Anaconda) and several Python packages installed. The following instruction would work as is for Mac or Ubuntu Linux users, Windows users would need to install and work in the Git BASH terminal. JupyterLab has a built-in selectable dark theme, so you only need to install something if you want to use the classic notebook interface.
    Downloads: 8 This Week
    Last Update:
    See Project
  • 16
    PyTorch Natural Language Processing

    PyTorch Natural Language Processing

    Basic Utilities for PyTorch Natural Language Processing (NLP)

    PyTorch-NLP is a library for Natural Language Processing (NLP) in Python. It’s built with the very latest research in mind, and was designed from day one to support rapid prototyping. PyTorch-NLP comes with pre-trained embeddings, samplers, dataset loaders, metrics, neural network modules and text encoders. It’s open-source software, released under the BSD3 license. With your batch in hand, you can use PyTorch to develop and train your model using gradient descent. For example, check out...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 17
    Deep Learning Drizzle

    Deep Learning Drizzle

    Drench yourself in Deep Learning, Reinforcement Learning

    Drench yourself in Deep Learning, Reinforcement Learning, Machine Learning, Computer Vision, and NLP by learning from these exciting lectures! Optimization courses which form the foundation for ML, DL, RL. Computer Vision courses which are DL & ML heavy. Speech recognition courses which are DL heavy. Structured Courses on Geometric, Graph Neural Networks. Section on Autonomous Vehicles. Section on Computer Graphics with ML/DL focus.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    NiftyNet

    NiftyNet

    An open-source convolutional neural networks platform for research

    An open-source convolutional neural networks platform for medical image analysis and image-guided therapy. NiftyNet is a TensorFlow-based open-source convolutional neural networks (CNNs) platform for research in medical image analysis and image-guided therapy. NiftyNet’s modular structure is designed for sharing networks and pre-trained models. Using this modular structure you can get started with established pre-trained networks using built-in tools. Adapt existing networks to your imaging...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    RoboSat

    RoboSat

    Semantic segmentation on aerial and satellite imagery

    RoboSat is an end-to-end pipeline written in Python 3 for feature extraction from aerial and satellite imagery. Features can be anything visually distinguishable in the imagery for example: buildings, parking lots, roads, or cars.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    ChainerCV

    ChainerCV

    ChainerCV: a Library for Deep Learning in Computer Vision

    ChainerCV is a collection of tools to train and run neural networks for computer vision tasks using Chainer. In ChainerCV, we define the object detection task as a problem of, given an image, bounding box-based localization and categorization of objects. Bounding boxes in an image are represented as a two-dimensional array of shape (R,4), where R is the number of bounding boxes and the second axis corresponds to the coordinates of bounding boxes. ChainerCV supports dataset loaders, which can...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    CakeChat

    CakeChat

    CakeChat: Emotional Generative Dialog System

    CakeChat is a backend for chatbots that are able to express emotions via conversations. The code is flexible and allows to condition model's responses by an arbitrary categorical variable. For example, you can train your own persona-based neural conversational model or create an emotional chatting machine. Hierarchical Recurrent Encoder-Decoder (HRED) architecture for handling deep dialog context. Multilayer RNN with GRU cells. The first layer of the utterance-level encoder is always...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    NeuralCoref

    NeuralCoref

    Fast Coreference Resolution in spaCy with Neural Networks

    NeuralCoref is a pipeline extension for spaCy 2.1+ which annotates and resolves coreference clusters using a neural network. NeuralCoref is production-ready, integrated in spaCy's NLP pipeline and extensible to new training datasets. For a brief introduction to coreference resolution and NeuralCoref, please refer to our blog post. NeuralCoref is written in Python/Cython and comes with a pre-trained statistical model for English only. NeuralCoref is accompanied by a visualization client...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 23
    NeuroNER

    NeuroNER

    Named-entity recognition using neural networks

    Named-entity recognition (NER) aims at identifying entities of interest in the text, such as location, organization and temporal expression. Identified entities can be used in various downstream applications such as patient note de-identification and information extraction systems. They can also be used as features for machine learning systems for other natural language processing tasks. Leverages the state-of-the-art prediction capabilities of neural networks (a.k.a. "deep learning") Is cross...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    Tensorpack

    Tensorpack

    A Neural Net Training Interface on TensorFlow, with focus on speed

    Tensorpack is a neural network training interface based on TensorFlow v1. Uses TensorFlow in the efficient way with no extra overhead. On common CNNs, it runs training 1.2~5x faster than the equivalent Keras code. Your training can probably gets faster if written with Tensorpack. Scalable data-parallel multi-GPU / distributed training strategy is off-the-shelf to use. Squeeze the best data loading performance of Python with tensorpack.dataflow. Symbolic programming (e.g. tf.data) does not offer...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    Deepvoice3_pytorch

    Deepvoice3_pytorch

    PyTorch implementation of convolutional neural networks

    An open source implementation of Deep Voice 3: Scaling Text-to-Speech with Convolutional Sequence Learning.
    Downloads: 0 This Week
    Last Update:
    See Project
Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.