Showing 1010 open source projects for "artificial intelligence algorithm"

View related business solutions
  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    Build gen AI apps with an all-in-one modern database: MongoDB Atlas

    MongoDB Atlas provides built-in vector search and a flexible document model so developers can build, scale, and run gen AI apps without stitching together multiple databases. From LLM integration to semantic search, Atlas simplifies your AI architecture—and it’s free to get started.
    Start Free
  • Photo and Video Editing APIs and SDKs Icon
    Photo and Video Editing APIs and SDKs

    Trusted by 150 million+ creators and businesses globally

    Unlock Picsart's full editing suite by embedding our Editor SDK directly into your platform. Offer your users the power of a full design suite without leaving your site.
    Learn More
  • 1
    Perplexica

    Perplexica

    Perplexica is an AI-powered search engine

    Perplexica is an open-source AI-powered searching tool or an AI-powered search engine that goes deep into the internet to find answers. Inspired by Perplexity AI, it's an open-source option that not just searches the web but understands your questions. It uses advanced machine learning algorithms like similarity searching and embeddings to refine results and provides clear answers with sources cited. Using SearxNG to stay current and fully open source, Perplexica ensures you always get the...
    Downloads: 9 This Week
    Last Update:
    See Project
  • 2
    Weights and Biases

    Weights and Biases

    Tool for visualizing and tracking your machine learning experiments

    Use W&B to build better models faster. Track and visualize all the pieces of your machine learning pipeline, from datasets to production models. Quickly identify model regressions. Use W&B to visualize results in real time, all in a central dashboard. Focus on the interesting ML. Spend less time manually tracking results in spreadsheets and text files. Capture dataset versions with W&B Artifacts to identify how changing data affects your resulting models. Reproduce any model, with saved...
    Downloads: 7 This Week
    Last Update:
    See Project
  • 3
    MindsDB

    MindsDB

    Making Enterprise Data Intelligent and Responsive for AI

    MindsDB is an AI data solution that enables humans, AI, agents, and applications to query data in natural language and SQL, and get highly accurate answers across disparate data sources and types. MindsDB connects to diverse data sources and applications, and unifies petabyte-scale structured and unstructured data. Powered by an industry-first cognitive engine that can operate anywhere (on-prem, VPC, serverless), it empowers both humans and AI with highly informed decision-making...
    Downloads: 6 This Week
    Last Update:
    See Project
  • 4
    Datasets

    Datasets

    Hub of ready-to-use datasets for ML models

    Datasets is a library for easily accessing and sharing datasets, and evaluation metrics for Natural Language Processing (NLP), computer vision, and audio tasks. Load a dataset in a single line of code, and use our powerful data processing methods to quickly get your dataset ready for training in a deep learning model. Backed by the Apache Arrow format, process large datasets with zero-copy reads without any memory constraints for optimal speed and efficiency. We also feature a deep...
    Downloads: 6 This Week
    Last Update:
    See Project
  • No-Nonsense Code-to-Cloud Security for Devs | Aikido Icon
    No-Nonsense Code-to-Cloud Security for Devs | Aikido

    Connect your GitHub, GitLab, Bitbucket, or Azure DevOps account to start scanning your repos for free.

    Aikido provides a unified security platform for developers, combining 12 powerful scans like SAST, DAST, and CSPM. AI-driven AutoFix and AutoTriage streamline vulnerability management, while runtime protection blocks attacks.
    Start for Free
  • 5
    NannyML

    NannyML

    Detecting silent model failure. NannyML estimates performance

    ... science, empowering data scientist to quickly understand and automatically detect silent model failure. By using NannyML, data scientists can finally maintain complete visibility and trust in their deployed machine learning models. When the actual outcome of your deployed prediction models is delayed, or even when post-deployment target labels are completely absent, you can use NannyML's CBPE-algorithm to estimate model performance.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 6
    Imagen - Pytorch

    Imagen - Pytorch

    Implementation of Imagen, Google's Text-to-Image Neural Network

    Implementation of Imagen, Google's Text-to-Image Neural Network that beats DALL-E2, in Pytorch. It is the new SOTA for text-to-image synthesis. Architecturally, it is actually much simpler than DALL-E2. It consists of a cascading DDPM conditioned on text embeddings from a large pre-trained T5 model (attention network). It also contains dynamic clipping for improved classifier-free guidance, noise level conditioning, and a memory-efficient unit design. It appears neither CLIP nor prior...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 7
    Core ML Tools

    Core ML Tools

    Core ML tools contain supporting tools for Core ML model conversion

    Use Core ML Tools (coremltools) to convert machine learning models from third-party libraries to the Core ML format. This Python package contains the supporting tools for converting models from training libraries. Core ML is an Apple framework to integrate machine learning models into your app. Core ML provides a unified representation for all models. Your app uses Core ML APIs and user data to make predictions, and to fine-tune models, all on the user’s device. Core ML optimizes on-device...
    Downloads: 8 This Week
    Last Update:
    See Project
  • 8
    Diffgram

    Diffgram

    Training data (data labeling, annotation, workflow) for all data types

    From ingesting data to exploring it, annotating it, and managing workflows. Diffgram is a single application that will improve your data labeling and bring all aspects of training data under a single roof. Diffgram is world’s first truly open source training data platform that focuses on giving its users an unlimited experience. This is aimed to reduce your data labeling bills and increase your Training Data Quality. Training Data is the art of supervising machines through data. This...
    Downloads: 5 This Week
    Last Update:
    See Project
  • 9
    FiftyOne

    FiftyOne

    The open-source tool for building high-quality datasets

    The open-source tool for building high-quality datasets and computer vision models. Nothing hinders the success of machine learning systems more than poor-quality data. And without the right tools, improving a model can be time-consuming and inefficient. FiftyOne supercharges your machine learning workflows by enabling you to visualize datasets and interpret models faster and more effectively. Improving data quality and understanding your model’s failure modes are the most impactful ways to...
    Downloads: 7 This Week
    Last Update:
    See Project
  • Build Securely on Azure with Proven Frameworks Icon
    Build Securely on Azure with Proven Frameworks

    Lay a foundation for success with Tested Reference Architectures developed by Fortinet’s experts. Learn more in this white paper.

    Moving to the cloud brings new challenges. How can you manage a larger attack surface while ensuring great network performance? Turn to Fortinet’s Tested Reference Architectures, blueprints for designing and securing cloud environments built by cybersecurity experts. Learn more and explore use cases in this white paper.
    Download Now
  • 10
    Best-of Machine Learning with Python

    Best-of Machine Learning with Python

    A ranked list of awesome machine learning Python libraries

    This curated list contains 900 awesome open-source projects with a total of 3.3M stars grouped into 34 categories. All projects are ranked by a project-quality score, which is calculated based on various metrics automatically collected from GitHub and different package managers. If you like to add or update projects, feel free to open an issue, submit a pull request, or directly edit the projects.yaml. Contributions are very welcome! General-purpose machine learning and deep learning...
    Downloads: 5 This Week
    Last Update:
    See Project
  • 11
    ChatterBot

    ChatterBot

    Machine learning, conversational dialog engine for creating chat bots

    ChatterBot is a Python library that makes it easy to generate automated responses to a user’s input. ChatterBot uses a selection of machine learning algorithms to produce different types of responses. This makes it easy for developers to create chat bots and automate conversations with users. For more details about the ideas and concepts behind ChatterBot see the process flow diagram. The language independent design of ChatterBot allows it to be trained to speak any language. Additionally,...
    Downloads: 7 This Week
    Last Update:
    See Project
  • 12
    Whisper Turbo

    Whisper Turbo

    Cross-Platform, GPU Accelerated Whisper

    Whisper Turbo is a fast, cross-platform Whisper implementation, designed to run entirely client-side in your browser/electron app.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 13
    tslearn

    tslearn

    The machine learning toolkit for time series analysis in Python

    The machine learning toolkit for time series analysis in Python. tslearn expects a time series dataset to be formatted as a 3D numpy array. The three dimensions correspond to the number of time series, the number of measurements per time series and the number of dimensions respectively (n_ts, max_sz, d). In order to get the data in the right format.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 14
    mlx

    mlx

    MLX: An array framework for Apple silicon

    MlX offers a local web interface to browse, download, and run ML models via Hugging Face or local sources. It supports searching by tags or tasks, visualization of model metadata, quick inference demos, automatic setup of runtime environments, and works with PyTorch, TensorFlow, and ONNX. Ideal for researchers exploring and testing models via browser.
    Downloads: 6 This Week
    Last Update:
    See Project
  • 15
    Daft

    Daft

    Distributed DataFrame for Python designed for the cloud

    Daft is a framework for ETL, analytics and ML/AI at scale. Its familiar Python Dataframe API is built to outperform Spark in performance and ease of use. Daft plugs directly into your ML/AI stack through efficient zero-copy integrations with essential Python libraries such as Pytorch and Ray. It also allows requesting GPUs as a resource for running models. Daft runs locally with a lightweight multithreaded backend. When your local machine is no longer sufficient, it scales seamlessly to run...
    Downloads: 6 This Week
    Last Update:
    See Project
  • 16
    PyTensor

    PyTensor

    Python library for defining and optimizing mathematical expressions

    PyTensor is a fork of Aesara, a Python library for defining, optimizing, and efficiently evaluating mathematical expressions involving multi-dimensional arrays. PyTensor is based on Theano, which has been powering large-scale computationally intensive scientific investigations since 2007. A hackable, pure-Python codebase. Extensible graph framework is suitable for rapid development of custom operators and symbolic optimizations. Implements an extensible graph transpilation framework that...
    Downloads: 6 This Week
    Last Update:
    See Project
  • 17
    huggingface_hub

    huggingface_hub

    The official Python client for the Huggingface Hub

    The huggingface_hub library allows you to interact with the Hugging Face Hub, a platform democratizing open-source Machine Learning for creators and collaborators. Discover pre-trained models and datasets for your projects or play with the thousands of machine-learning apps hosted on the Hub. You can also create and share your own models, datasets, and demos with the community. The huggingface_hub library provides a simple way to do all these things with Python.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 18
    Tokenizers

    Tokenizers

    Fast State-of-the-Art Tokenizers optimized for Research and Production

    Fast State-of-the-art tokenizers, optimized for both research and production. Tokenizers provides an implementation of today’s most used tokenizers, with a focus on performance and versatility. These tokenizers are also used in Transformers. Train new vocabularies and tokenize, using today’s most used tokenizers. Extremely fast (both training and tokenization), thanks to the Rust implementation. Takes less than 20 seconds to tokenize a GB of text on a server’s CPU. Easy to use, but also...
    Downloads: 7 This Week
    Last Update:
    See Project
  • 19
    Porcupine

    Porcupine

    On-device wake word detection powered by deep learning

    Build always-listening yet private voice applications. Porcupine is a highly-accurate and lightweight wake word engine. It enables building always-listening voice-enabled applications. It is using deep neural networks trained in real-world environments. Compact and computationally-efficient. It is perfect for IoT. Cross-platform. Arm Cortex-M, STM32, PSoC, Arduino, and i.MX RT. Raspberry Pi, NVIDIA Jetson Nano, and BeagleBone. Android and iOS. Chrome, Safari, Firefox, and Edge. Linux...
    Downloads: 6 This Week
    Last Update:
    See Project
  • 20
    BentoML

    BentoML

    Unified Model Serving Framework

    BentoML simplifies ML model deployment and serves your models at a production scale. Support multiple ML frameworks natively: Tensorflow, PyTorch, XGBoost, Scikit-Learn and many more! Define custom serving pipeline with pre-processing, post-processing and ensemble models. Standard .bento format for packaging code, models and dependencies for easy versioning and deployment. Integrate with any training pipeline or ML experimentation platform. Parallelize compute-intense model inference...
    Downloads: 6 This Week
    Last Update:
    See Project
  • 21
    OpenVINO Training Extensions

    OpenVINO Training Extensions

    Trainable models and NN optimization tools

    OpenVINO™ Training Extensions provide a convenient environment to train Deep Learning models and convert them using the OpenVINO™ toolkit for optimized inference. When ote_cli is installed in the virtual environment, you can use the ote command line interface to perform various actions for templates related to the chosen task type, such as running, training, evaluating, exporting, etc. ote train trains a model (a particular model template) on a dataset and saves results in two files. ote...
    Downloads: 5 This Week
    Last Update:
    See Project
  • 22
    caret

    caret

    caret (Classification And Regression Training) R package

    The caret (Classification And Regression Training) R package streamlines the process of building predictive machine learning models. It provides uniform interfaces for model training, tuning, evaluation, preprocessing, and variable importance. With support for over 200 models, caret is foundational for R workflows in modeling and machine learning.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 23
    DiffEqFlux.jl

    DiffEqFlux.jl

    Pre-built implicit layer architectures with O(1) backprop, GPUs

    DiffEqFlux.jl is a Julia library that combines differential equations with neural networks, enabling the creation of neural differential equations (neural ODEs), universal differential equations, and physics-informed learning models. It serves as a bridge between the DifferentialEquations.jl and Flux.jl libraries, allowing for end-to-end differentiable simulations and model training in scientific machine learning. DiffEqFlux.jl is widely used for modeling dynamical systems with learnable...
    Downloads: 5 This Week
    Last Update:
    See Project
  • 24
    Kubeflow Training Operator

    Kubeflow Training Operator

    Distributed ML Training and Fine-Tuning on Kubernetes

    Kubeflow Training Operator is a Kubernetes-native project for fine-tuning and scalable distributed training of machine learning (ML) models created with various ML frameworks such as PyTorch, TensorFlow, XGBoost, MPI, Paddle, and others.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 25
    NGBoost

    NGBoost

    Natural Gradient Boosting for Probabilistic Prediction

    ngboost is a Python library that implements Natural Gradient Boosting, as described in "NGBoost: Natural Gradient Boosting for Probabilistic Prediction". It is built on top of Scikit-Learn and is designed to be scalable and modular with respect to the choice of proper scoring rule, distribution, and base learner. A didactic introduction to the methodology underlying NGBoost is available in this slide deck.
    Downloads: 4 This Week
    Last Update:
    See Project
Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.