Showing 100 open source projects for "text"

View related business solutions
  • Outgrown Windows Task Scheduler? Icon
    Outgrown Windows Task Scheduler?

    Free diagnostic identifies where your workflow is breaking down—with instant analysis of your scheduling environment.

    Windows Task Scheduler wasn't built for complex, cross-platform automation. Get a free diagnostic that shows exactly where things are failing and provides remediation recommendations. Interactive HTML report delivered in minutes.
    Download Free Tool
  • AI-generated apps that pass security review Icon
    AI-generated apps that pass security review

    Stop waiting on engineering. Build production-ready internal tools with AI—on your company data, in your cloud.

    Retool lets you generate dashboards, admin panels, and workflows directly on your data. Type something like “Build me a revenue dashboard on my Stripe data” and get a working app with security, permissions, and compliance built in from day one. Whether on our cloud or self-hosted, create the internal software your team needs without compromising enterprise standards or control.
    Try Retool free
  • 1
    FARM

    FARM

    Fast & easy transfer learning for NLP

    ...It's built upon transformers and provides additional features to simplify the life of developers: Parallelized preprocessing, highly modular design, multi-task learning, experiment tracking, easy debugging and close integration with AWS SageMaker. With FARM you can build fast proofs-of-concept for tasks like text classification, NER or question answering and transfer them easily into production. Easy fine-tuning of language models to your task and domain language. AMP optimizers (~35% faster) and parallel preprocessing (16 CPU cores => ~16x faster). Modular design of language models and prediction heads. Switch between heads or combine them for multitask learning. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    AliceMind

    AliceMind

    ALIbaba's Collection of Encoder-decoders from MinD

    ...We propose a novel scheme that jointly pre-trains an autoencoding and autoregressive language model on a large unlabeled corpus, specifically designed for generating new text conditioned on context. It achieves new SOTA results in several downstream tasks.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    Universal Data Tool

    Universal Data Tool

    Collaborate & label any type of data, images, text, or documents etc.

    An open-source tool and library for creating and labeling datasets of images, audio, text, documents and video in an open data format. The Universal Data Tool can be used by anyone on your team, no data or programming skills needed. Simplicity without sacrificing any powerful developer features and integrations. Use the Universal Data Tool directly from a web browser or with a Windows, Mac or Linux desktop application.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    TTS

    TTS

    Deep learning for text to speech

    TTS is a library for advanced Text-to-Speech generation. It's built on the latest research, was designed to achieve the best trade-off among ease-of-training, speed, and quality. TTS comes with pre-trained models, tools for measuring dataset quality, and is already used in 20+ languages for products and research projects. Released models in PyTorch, Tensorflow and TFLite.
    Downloads: 6 This Week
    Last Update:
    See Project
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • 5
    ML for Trading

    ML for Trading

    Code for machine learning for algorithmic trading, 2nd edition

    ...Covers key aspects of data sourcing, financial feature engineering, and portfolio management. The design and evaluation of long-short strategies based on a broad range of ML algorithms, how to extract tradeable signals from financial text data like SEC filings, earnings call transcripts or financial news. Using deep learning models like CNN and RNN with financial and alternative data, and how to generate synthetic data with Generative Adversarial Networks, as well as training a trading agent using deep reinforcement learning.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 6
    PaddlePaddle models

    PaddlePaddle models

    Pre-trained and Reproduced Deep Learning Models

    Pre-trained and Reproduced Deep Learning Models ("Flying Paddle" official model library, including a variety of academic frontier and industrial scene verification of deep learning models) Flying Paddle's industrial-level model library includes a large number of mainstream models that have been polished by industrial practice for a long time and models that have won championships in international competitions; it provides many scenarios for semantic understanding, image classification, target detection, image segmentation, text recognition, speech synthesis, etc. An end-to-end development kit that meets the needs of enterprises for low-cost development and rapid integration. The model library of Flying Paddle is an industrial-level model library tailored around the actual R&D process of domestic enterprises, serving enterprises in many fields such as energy, finance, industry, and agriculture.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    fastNLP

    fastNLP

    fastNLP: A Modularized and Extensible NLP Framework

    ...Provide a variety of neural network components and recurrence models (covering tasks such as Chinese word segmentation, named entity recognition, syntactic analysis, text classification, text matching, metaphor resolution, summarization, etc.). Trainer provides a variety of built-in Callback functions to facilitate experiment recording, exception capture, etc. Automatic download of some datasets and pre-trained models.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    Turi Create

    Turi Create

    Simplifies the development of custom machine learning models

    Turi Create simplifies the development of custom machine learning models. You don't have to be a machine learning expert to add recommendations, object detection, image classification, image similarity or activity classification to your app. If you want your app to recognize specific objects in images, you can build your own model with just a few lines of code. Turi Create supports macOS 10.12+, Linux (with glibc 2.10+), Windows 10 (via WSL). Turi Create requires Python 2.7, 3.5, 3.6, 3.7,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    GluonNLP

    GluonNLP

    NLP made easy

    ...Fasttext models trained with the library of Facebook research are exported both in text and a binary format. Unlike the text format, the binary format preserves information about subword units and consequently supports the computation of word vectors for words unknown during training (and not included in the text format). Besides training new fastText embeddings with Gluon NLP it is also possible to load the binary format into a Block provided by the Gluon NLP toolkit.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Atera all-in-one platform IT management software with AI agents Icon
    Atera all-in-one platform IT management software with AI agents

    Ideal for internal IT departments or managed service providers (MSPs)

    Atera’s AI agents don’t just assist, they act. From detection to resolution, they handle incidents and requests instantly, taking your IT management from automated to autonomous.
    Learn More
  • 10
    Delta ML

    Delta ML

    Deep learning based natural language and speech processing platform

    ...Use configuration files to easily tune parameters and network structures. What you see in training is what you get in serving: all data processing and features extraction are integrated into a model graph. Text classification, named entity recognition, question and answering, text summarization, etc. Uniform I/O interfaces and no changes for new models.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    Computer Vision Pretrained Models

    Computer Vision Pretrained Models

    A collection of computer vision pre-trained models

    A pre-trained model is a model created by someone else to solve a similar problem. Instead of building a model from scratch to solve a similar problem, we can use the model trained on other problem as a starting point. A pre-trained model may not be 100% accurate in your application. For example, if you want to build a self-learning car. You can spend years building a decent image recognition algorithm from scratch or you can take the inception model (a pre-trained model) from Google which...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    Euler

    Euler

    A distributed graph deep learning framework.

    As a general data structure with strong expressive ability, graphs can be used to describe many problems in the real world, such as user networks in social scenarios, user and commodity networks in e-commerce scenarios, communication networks in telecom scenarios, and transaction networks in financial scenarios. and drug molecule networks in medical scenarios, etc. Data in the fields of text, speech, and images is easier to process into a grid-like type of Euclidean space, which is suitable for processing by existing deep learning models. Graph is a data type in non-Euclidean space and cannot be directly applied to existing methods, requiring a specially designed graph neural network system. Graph-based learning methods such as graph neural networks combine end-to-end learning with inductive reasoning, and are expected to solve a series of problems such as relational reasoning and interpretability that deep learning cannot handle.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    Tensor2Tensor

    Tensor2Tensor

    Library of deep learning models and datasets

    Deep Learning (DL) has enabled the rapid advancement of many useful technologies, such as machine translation, speech recognition and object detection. In the research community, one can find code open-sourced by the authors to help in replicating their results and further advancing deep learning. However, most of these DL systems use unique setups that require significant engineering effort and may only work for a specific problem or architecture, making it hard to run new experiments and...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    NLP Best Practices

    NLP Best Practices

    Natural Language Processing Best Practices & Examples

    ...Data scientists started moving from traditional methods to state-of-the-art (SOTA) deep neural network (DNN) algorithms which use language models pretrained on large text corpora. This repository contains examples and best practices for building NLP systems, provided as Jupyter notebooks and utility functions. The focus of the repository is on state-of-the-art methods and common scenarios that are popular among researchers and practitioners working on problems involving text and language. The goal of this repository is to build a comprehensive set of tools and examples that leverage recent advances in NLP algorithms, neural architectures, and distributed machine learning systems.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    textgenrnn

    textgenrnn

    Easily train your own text-generating neural network

    With textgenrnn you can easily train your own text-generating neural network of any size and complexity on any text dataset with a few lines of code. A modern neural network architecture that utilizes new techniques as attention-weighting and skip-embedding to accelerate training and improve model quality. Train on and generate text at either the character-level or word-level. Configure RNN size, the number of RNN layers, and whether to use bidirectional RNNs. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    Speech Recognition in English & Polish

    Speech Recognition in English & Polish

    Speech recognition software for English & Polish languages

    Software for speech recognition in English & Polish languages. Basic versions of SkryBot: 1. SkryBot Home Speech (English Language) - https://sourceforge.net/projects/skrybotdomowy/files/ReleasesEnglish/InstalatorSkryBotHomeSpeechDemo-2.6.9.18117.exe/download 2. SkryBot DoMowy (Polish Language) - https://sourceforge.net/projects/skrybotdomowy/files/ReleasesPolish/InstalatorSkryBotDoMowyDemo-2.4.9.18117.exe/download More...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 17
    Texar

    Texar

    Toolkit for Machine Learning, Natural Language Processing

    Texar is a toolkit aiming to support a broad set of machine learning, especially natural language processing and text generation tasks. Texar provides a library of easy-to-use ML modules and functionalities for composing whatever models and algorithms. The tool is designed for both researchers and practitioners for fast prototyping and experimentation. Texar was originally developed and is actively contributed by Petuum and CMU in collaboration with other institutes.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    PyTorch Natural Language Processing

    PyTorch Natural Language Processing

    Basic Utilities for PyTorch Natural Language Processing (NLP)

    ...It’s built with the very latest research in mind, and was designed from day one to support rapid prototyping. PyTorch-NLP comes with pre-trained embeddings, samplers, dataset loaders, metrics, neural network modules and text encoders. It’s open-source software, released under the BSD3 license. With your batch in hand, you can use PyTorch to develop and train your model using gradient descent. For example, check out this example code for training on the Stanford Natural Language Inference (SNLI) Corpus. Now you've setup your pipeline, you may want to ensure that some functions run deterministically. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    MatchZoo

    MatchZoo

    Facilitating the design, comparison and sharing of deep text models

    The goal of MatchZoo is to provide a high-quality codebase for deep text matching research, such as document retrieval, question answering, conversational response ranking, and paraphrase identification. With the unified data processing pipeline, simplified model configuration and automatic hyper-parameters tunning features equipped, MatchZoo is flexible and easy to use. Preprocess your input data in three lines of code, keep track parameters to be passed into the model.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    TEXT2DATA

    TEXT2DATA

    Text Analytics Platform

    Bring Text Analytics Platform that uses NLP (Natural Language Processing) and Machine Learning to your work environment. Extract essential information from your text documents and let Artificial Intelligence save your time. Get detailed and agile reports on your unstructured data.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 21
    Fuzzy Ecospace Modelling

    Fuzzy Ecospace Modelling

    FEM allows users to create fuzzy functional groups for use in ecology.

    ...FEM clusters n-dimensional matrices of functional traits (ecospace matrices – here called the Training Matrix) into functional groups and converts them into fuzzy functional groups using fuzzy discriminant analysis (Lin and Chen 2004 – see main text for more information). Following this, FEM classifies the functional entities from a second matrix (the Test Matrix) into the groups made using the Training Matrix, generating fuzzy membership values for each unit in the Test Matrix. These values are real numbers from 0 to 1, representing increasing degrees of “truth” regarding an organism’s membership in the fuzzy set (see main text). ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    easy12306

    easy12306

    Automatic recognition of 12306 verification code

    Automatic recognition of 12306 verification code using machine learning algorithm. Identify never-before-seen pictures.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    NeuroNER

    NeuroNER

    Named-entity recognition using neural networks

    Named-entity recognition (NER) aims at identifying entities of interest in the text, such as location, organization and temporal expression. Identified entities can be used in various downstream applications such as patient note de-identification and information extraction systems. They can also be used as features for machine learning systems for other natural language processing tasks. Leverages the state-of-the-art prediction capabilities of neural networks (a.k.a.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24

    Arabic Corpus

    Text categorization, arabic language processing, language modeling

    The Arabic Corpus {compiled by Dr. Mourad Abbas ( http://sites.google.com/site/mouradabbas9/corpora ) The corpus Khaleej-2004 contains 5690 documents. It is divided to 4 topics (categories). The corpus Watan-2004 contains 20291 documents organized in 6 topics (categories). Researchers who use these two corpora would mention the two main references: (1) For Watan-2004 corpus ---------------------- M. Abbas, K. Smaili, D. Berkani, (2011) Evaluation of Topic Identification Methods on...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 25
    Deepvoice3_pytorch

    Deepvoice3_pytorch

    PyTorch implementation of convolutional neural networks

    An open source implementation of Deep Voice 3: Scaling Text-to-Speech with Convolutional Sequence Learning.
    Downloads: 0 This Week
    Last Update:
    See Project