Showing 82 open source projects for "network data speed"

View related business solutions
  • Atera all-in-one platform IT management software with AI agents Icon
    Atera all-in-one platform IT management software with AI agents

    Ideal for internal IT departments or managed service providers (MSPs)

    Atera’s AI agents don’t just assist, they act. From detection to resolution, they handle incidents and requests instantly, taking your IT management from automated to autonomous.
    Learn More
  • Payments you can rely on to run smarter. Icon
    Payments you can rely on to run smarter.

    Never miss a sale. Square payment processing serves customers better with tools and integrations that make work more efficient.

    Accept payments at your counter or on the go. It’s easy to get started. Try the Square POS app on your phone or pick from a range of hardworking hardware.
    Learn More
  • 1
    SINGA

    SINGA

    A distributed deep learning platform

    Apache SINGA is an Apache Top Level Project, focusing on distributed training of deep learning and machine learning models. Various example deep learning models are provided in SINGA repo on Github and on Google Colab. SINGA supports data parallel training across multiple GPUs (on a single node or across different nodes). SINGA supports various popular optimizers including stochastic gradient descent with momentum, Adam, RMSProp, and AdaGrad, etc. SINGA records the computation graph and...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    NLP Best Practices

    NLP Best Practices

    Natural Language Processing Best Practices & Examples

    In recent years, natural language processing (NLP) has seen quick growth in quality and usability, and this has helped to drive business adoption of artificial intelligence (AI) solutions. In the last few years, researchers have been applying newer deep learning methods to NLP. Data scientists started moving from traditional methods to state-of-the-art (SOTA) deep neural network (DNN) algorithms which use language models pretrained on large text corpora. This repository contains examples and best practices for building NLP systems, provided as Jupyter notebooks and utility functions. The focus of the repository is on state-of-the-art methods and common scenarios that are popular among researchers and practitioners working on problems involving text and language. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    BytePS

    BytePS

    A high performance and generic framework for distributed DNN training

    ...For example, on BERT-large training, BytePS can achieve ~90% scaling efficiency with 256 GPUs (see below), which is much higher than Horovod+NCCL. In certain scenarios, BytePS can double the training speed compared with Horovod+NCCL. We show our experiment on BERT-large training, which is based on GluonNLP toolkit. The model uses mixed precision. We use Tesla V100 32GB GPUs and set batch size equal to 64 per GPU. Each machine has 8 V100 GPUs (32GB memory) with NVLink-enabled. Machines are inter-connected with 100 Gbps RDMA network. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    textgenrnn

    textgenrnn

    Easily train your own text-generating neural network

    With textgenrnn you can easily train your own text-generating neural network of any size and complexity on any text dataset with a few lines of code. A modern neural network architecture that utilizes new techniques as attention-weighting and skip-embedding to accelerate training and improve model quality. Train on and generate text at either the character-level or word-level. Configure RNN size, the number of RNN layers, and whether to use bidirectional RNNs. Train on any generic input text...
    Downloads: 0 This Week
    Last Update:
    See Project
  • The Original Buy Center Software. Icon
    The Original Buy Center Software.

    Never Go To The Auction Again.

    VAN sources private-party vehicles from over 20 platforms and provides all necessary tools to communicate with sellers and manage opportunities. Franchise and Independent dealers can boost their buy center strategies with our advanced tools and an experienced Acquisition Coaching™ team dedicated to your success.
    Learn More
  • 5
    CrypTen

    CrypTen

    A framework for Privacy Preserving Machine Learning

    CrypTen is a research framework developed by Facebook Research for privacy-preserving machine learning built directly on top of PyTorch. It provides a secure and intuitive environment for performing computations on encrypted data using Secure Multiparty Computation (SMPC). Designed to make secure computation accessible to machine learning practitioners, CrypTen introduces a CrypTensor object that behaves like a regular PyTorch tensor, allowing users to seamlessly apply automatic differentiation and neural network operations. Its design mirrors PyTorch’s modular and library-based structure, enabling flexible experimentation, debugging, and model development. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    Deep Learning with PyTorch

    Deep Learning with PyTorch

    Latest techniques in deep learning and representation learning

    This course concerns the latest techniques in deep learning and representation learning, focusing on supervised and unsupervised deep learning, embedding methods, metric learning, convolutional and recurrent nets, with applications to computer vision, natural language understanding, and speech recognition. The prerequisites include DS-GA 1001 Intro to Data Science or a graduate-level machine learning course. To be able to follow the exercises, you are going to need a laptop with Miniconda (a...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    NiftyNet

    NiftyNet

    An open-source convolutional neural networks platform for research

    An open-source convolutional neural networks platform for medical image analysis and image-guided therapy. NiftyNet is a TensorFlow-based open-source convolutional neural networks (CNNs) platform for research in medical image analysis and image-guided therapy. NiftyNet’s modular structure is designed for sharing networks and pre-trained models. Using this modular structure you can get started with established pre-trained networks using built-in tools. Adapt existing networks to your imaging...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    Docker Machine

    Docker Machine

    Machine management for a container-centric world

    Docker Machine is a tool that lets you install Docker Engine on virtual hosts, and manage the hosts with docker-machine commands. You can use Machine to create Docker hosts on your local Mac or Windows box, on your company network, in your data center, or on cloud providers like Azure, AWS, or DigitalOcean. Using docker-machine commands, you can start, inspect, stop, and restart a managed host, upgrade the Docker client and daemon, and configure a Docker client to talk to your host. Point the Machine CLI at a running, managed host, and you can run docker commands directly on that host. ...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 9
    Rainbow

    Rainbow

    Rainbow: Combining Improvements in Deep Reinforcement Learning

    Combining improvements in deep reinforcement learning. Results and pretrained models can be found in the releases. Data-efficient Rainbow can be run using several options (note that the "unbounded" memory is implemented here in practice by manually setting the memory capacity to be the same as the maximum number of timesteps).
    Downloads: 0 This Week
    Last Update:
    See Project
  • Create and run cloud-based virtual machines. Icon
    Create and run cloud-based virtual machines.

    Secure and customizable compute service that lets you create and run virtual machines.

    Computing infrastructure in predefined or custom machine sizes to accelerate your cloud transformation. General purpose (E2, N1, N2, N2D) machines provide a good balance of price and performance. Compute optimized (C2) machines offer high-end vCPU performance for compute-intensive workloads. Memory optimized (M2) machines offer the highest memory and are great for in-memory databases. Accelerator optimized (A2) machines are based on the A100 GPU, for very demanding applications.
    Try for free
  • 10
    CakeChat

    CakeChat

    CakeChat: Emotional Generative Dialog System

    CakeChat is a backend for chatbots that are able to express emotions via conversations. The code is flexible and allows to condition model's responses by an arbitrary categorical variable. For example, you can train your own persona-based neural conversational model or create an emotional chatting machine. Hierarchical Recurrent Encoder-Decoder (HRED) architecture for handling deep dialog context. Multilayer RNN with GRU cells. The first layer of the utterance-level encoder is always...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    TenorSpace.js

    TenorSpace.js

    Neural network 3D visualization framework

    ...After preprocessing the model, TensorSpace supports the visualization of pre-trained models from TensorFlow, Keras and TensorFlow.js. TensorSpace is a neural network 3D visualization framework designed for not only showing the basic model structure but also presenting the processes of internal feature abstractions, intermediate data manipulations and final inference generations. By applying TensorSpace API, it is more intuitive to visualize and understand any pre-trained models built by TensorFlow, Keras, TensorFlow.js, etc.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    Tensorpack

    Tensorpack

    A Neural Net Training Interface on TensorFlow, with focus on speed

    Tensorpack is a neural network training interface based on TensorFlow v1. Uses TensorFlow in the efficient way with no extra overhead. On common CNNs, it runs training 1.2~5x faster than the equivalent Keras code. Your training can probably gets faster if written with Tensorpack. Scalable data-parallel multi-GPU / distributed training strategy is off-the-shelf to use.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    Oryx

    Oryx

    Lambda architecture on Apache Spark, Apache Kafka for real-time

    Oryx 2 is a realization of the lambda architecture built on Apache Spark and Apache Kafka, but with specialization for real-time large-scale machine learning. It is a framework for building applications but also includes packaged, end-to-end applications for collaborative filtering, classification, regression and clustering. The application is written in Java, using Apache Spark, Hadoop, Tomcat, Kafka, Zookeeper and more. Configuration uses a single Typesafe Config config file, wherein...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 14
    DIGITS

    DIGITS

    Deep Learning GPU training system

    The NVIDIA Deep Learning GPU Training System (DIGITS) puts the power of deep learning into the hands of engineers and data scientists. DIGITS can be used to rapidly train the highly accurate deep neural network (DNNs) for image classification, segmentation and object detection tasks. DIGITS simplifies common deep learning tasks such as managing data, designing and training neural networks on multi-GPU systems, monitoring performance in real-time with advanced visualizations, and selecting the best performing model from the results browser for deployment. ...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 15
    Tangent

    Tangent

    Source-to-source debuggable derivatives in pure Python

    ...Tangent is useful to researchers and students who not only want to write their models in Python, but also read and debug automatically-generated derivative code without sacrificing speed and flexibility. Tangent works on a large and growing subset of Python, provides extra autodiff features other Python ML libraries don't have, has reasonable performance, and is compatible with TensorFlow and NumPy.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    DeepLearningProject

    DeepLearningProject

    An in-depth machine learning tutorial

    ...Then you will go through a couple conventional machine learning algorithms, before finally getting to deep learning! In the fall of 2016, I was a Teaching Fellow (Harvard's version of TA) for the graduate class on "Advanced Topics in Data Science (CS209/109)" at Harvard University. I was in charge of designing the class project given to the students, and this tutorial has been built on top of the project I designed for the class.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    Grenade

    Grenade

    Deep Learning in Haskell

    ...To perform back propagation, one can call the eponymous function which takes a network, appropriate input, and target data, and returns the back propagated gradients for the network. The shapes of the gradients are appropriate for each layer and may be trivial for layers like Relu which have no learnable parameters.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    Apache PredictionIO

    Apache PredictionIO

    Machine learning server for developers and ML engineers

    Apache PredictionIO® is an open source Machine Learning Server built on top of a state-of-the-art open source stack for developers and data scientists to create predictive engines for any machine learning task. Quickly build and deploy an engine as a web service on production with customizable templates; respond to dynamic queries in real-time once deployed as a web service; evaluate and tune multiple engine variants systematically; unify data from multiple platforms in batch or in real-time for comprehensive predictive analytics; speed up machine learning modeling with systematic processes and pre-built evaluation measures; support machine learning and data processing libraries such as Spark MLLib and OpenNLP; implement your own machine learning models and seamlessly incorporate them into your engine; simplify data infrastructure management.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19

    Automatic cell lineage reconstruction

    Automatic segmentation and tracking for 3D time-lapse microscopy

    From Amat et al., Nature Methods, 2014*: "The comprehensive reconstruction of cell lineages in complex multicellular organisms is a central goal of developmental biology. We present an open-source computational framework for segmentation and tracking of cell nuclei with high accuracy and speed. We demonstrate its (1) generality, by reconstructing cell lineages in four-dimensional, terabyte-sized image data of fruit-fly, zebrafish and mouse embryos, acquired with three different types of fluorescence microscopes, (2) scalability, by analyzing advanced stages of development with up to 20,000 cells per time point, at 26,000 cells min-1 on a single computer workstation, and (3) ease of use, by adjusting only two parameters across all data sets and providing visualization and editing tools for efficient data curation. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20

    libVMR

    VMR - machine learning library

    libVMR is a class library written in Java which implements code generator for group method of data handling - GMDH. The library is intended for users, with machine learning skills. libVMR provides an effective framework for the research and development of data mining and predictive analytics. libVMR is based on the most popular neural network model with a higher generalization ability from kernel tricks - vector machine by Reshetov (VMR).
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    ConvNetJS

    ConvNetJS

    Deep learning in Javascript to train convolutional neural networks

    ConvNetJS is a Javascript library for training Deep Learning models (Neural Networks) entirely in your browser. Open a tab and you're training. No software requirements, no compilers, no installations, no GPUs, no sweat. ConvNetJS is an implementation of Neural networks, together with nice browser-based demos. It currently supports common Neural Network modules (fully connected layers, non-linearities), classification (SVM/Softmax) and Regression (L2) cost functions, ability to specify and...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22

    CURRENNT

    CUDA-enabled machine learning library for recurrent neural networks

    CURRENNT is a machine learning library for Recurrent Neural Networks (RNNs) which uses NVIDIA graphics cards to accelerate the computations. The library implements uni- and bidirectional Long Short-Term Memory (LSTM) architectures and supports deep networks as well as very large data sets that do not fit into main memory.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    Flamingo Project

    Flamingo Project

    Workflow Designer, Hive Editor, Pig Editor, File System Browser

    Flamingo is a open-source Big Data Platform that combine a Ajax Rich Web Interface + Workflow Engine + Workflow Designer + MapReduce + Hive Editor + Pig Editor. 1. Easy Tool for big data 2. Use comfortable in Hadoop EcoSystem projects 3. Based GPL V3 License Supporting Pig IDE, Hive IDE, HDFS Browser, Scheduler, Hadoop Job Monitoring, Workflow Engine, Workflow Designer, MapReduce.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    Consilium Sentence Suggestions Tools

    Consilium Sentence Suggestions Tools

    Consilium – User Defined sentence Suggestion Tool.

    There are many tools available in market which will provide spell correction or grammer correction while making documents, but very few tools are available which are providing sentence completion according to previously entered text. But this all are providing sentence complition suggestion for sentences which are oftenly or regularly used by all people in same manner. But in reality style of writing changes person to person. While our aim is to provide a sentence suggestion tool which...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    HW SOM

    HW SOM

    SOM - Self-Organizing Maps of Teuvo Kohonen

    It's a "Hello World" implementation of SOM (Self-Organizing Map) of Teuvo Kohonen, otherwise called as the Kohonen map or Kohonen artificial neural networks.
    Downloads: 0 This Week
    Last Update:
    See Project