Showing 302 open source projects for "using"

View related business solutions
  • Find Hidden Risks in Windows Task Scheduler Icon
    Find Hidden Risks in Windows Task Scheduler

    Free diagnostic script reveals configuration issues, error patterns, and security risks. Instant HTML report.

    Windows Task Scheduler might be hiding critical failures. Download the free JAMS diagnostic tool to uncover problems before they impact production—get a color-coded risk report with clear remediation steps in minutes.
    Download Free Tool
  • AI-generated apps that pass security review Icon
    AI-generated apps that pass security review

    Stop waiting on engineering. Build production-ready internal tools with AI—on your company data, in your cloud.

    Retool lets you generate dashboards, admin panels, and workflows directly on your data. Type something like “Build me a revenue dashboard on my Stripe data” and get a working app with security, permissions, and compliance built in from day one. Whether on our cloud or self-hosted, create the internal software your team needs without compromising enterprise standards or control.
    Try Retool free
  • 1
    tika-python

    tika-python

    Python binding to the Apache Tika™ REST services

    A Python port of the Apache Tika library that makes Tika available using the Tika REST Server. This makes Apache Tika available as a Python library, installable via Setuptools, Pip and easy to install. To use this library, you need to have Java 7+ installed on your system as tika-python starts up the Tika REST server in the background. To get this working in a disconnected environment, download a tika server file (both tika-server.jar and tika-server.jar.md5, which can be found here) and set the TIKA_SERVER_JAR environment variable to TIKA_SERVER_JAR="file:////tika-server.jar" which successfully tells python-tika to "download" this file and move it to /tmp/tika-server.jar and run as a background process. ...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 2
    GluonTS

    GluonTS

    Probabilistic time series modeling in Python

    GluonTS is a Python package for probabilistic time series modeling, focusing on deep learning based models. GluonTS requires Python 3.6 or newer, and the easiest way to install it is via pip. We train a DeepAR-model and make predictions using the simple "airpassengers" dataset. The dataset consists of a single time-series, containing monthly international passengers between the years 1949 and 1960, a total of 144 values (12 years * 12 months). We split the dataset into train and test parts, by removing the last three years (36 months) from the train data. Thus, we will train a model on just the first nine years of data. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    PyGAD

    PyGAD

    Source code of PyGAD, Python 3 library for building genetic algorithms

    ...PyGAD supports optimizing both single-objective and multi-objective problems. PyGAD supports different types of crossover, mutation, and parent selection. PyGAD allows different types of problems to be optimized using the genetic algorithm by customizing the fitness function.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 4
    spaCy models

    spaCy models

    Models for the spaCy Natural Language Processing (NLP) library

    ...It's easy to install, and its API is simple and productive. spaCy excels at large-scale information extraction tasks. It's written from the ground up in carefully memory-managed Cython. If your application needs to process entire web dumps, spaCy is the library you want to be using. Since its release in 2015, spaCy has become an industry standard with a huge ecosystem. Choose from a variety of plugins, integrate with your machine learning stack and build custom components and workflows.
    Downloads: 6 This Week
    Last Update:
    See Project
  • Atera all-in-one platform IT management software with AI agents Icon
    Atera all-in-one platform IT management software with AI agents

    Ideal for internal IT departments or managed service providers (MSPs)

    Atera’s AI agents don’t just assist, they act. From detection to resolution, they handle incidents and requests instantly, taking your IT management from automated to autonomous.
    Learn More
  • 5
    Raster Vision

    Raster Vision

    Open source framework for deep learning satellite and aerial imagery

    Raster Vision is an open source framework for Python developers building computer vision models on satellite, aerial, and other large imagery sets (including oblique drone imagery). There is built-in support for chip classification, object detection, and semantic segmentation using PyTorch. Raster Vision allows engineers to quickly and repeatably configure pipelines that go through core components of a machine learning workflow: analyzing training data, creating training chips, training models, creating predictions, evaluating models, and bundling the model files and configuration for easy deployment. The input to a Raster Vision pipeline is a set of images and training data, optionally with Areas of Interest (AOIs) that describe where the images are labeled. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    Lightly

    Lightly

    A python library for self-supervised learning on images

    ...We provide PyTorch, PyTorch Lightning and PyTorch Lightning distributed examples for each of the models to kickstart your project. Lightly requires Python 3.6+ but we recommend using Python 3.7+. We recommend installing Lightly in a Linux or OSX environment. With lightly, you can use the latest self-supervised learning methods in a modular way using the full power of PyTorch. Experiment with different backbones, models, and loss functions.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    dm_control

    dm_control

    DeepMind's software stack for physics-based simulation

    DeepMind's software stack for physics-based simulation and Reinforcement Learning environments, using MuJoCo. DeepMind's software stack for physics-based simulation and Reinforcement Learning environments, using MuJoCo physics. The MuJoCo Python bindings support three different OpenGL rendering backends: EGL (headless, hardware-accelerated), GLFW (windowed, hardware-accelerated), and OSMesa (purely software-based). At least one of these three backends must be available in order render through dm_control. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    SHAP

    SHAP

    A game theoretic approach to explain the output of ml models

    SHAP (SHapley Additive exPlanations) is a game theoretic approach to explain the output of any machine learning model. It connects optimal credit allocation with local explanations using the classic Shapley values from game theory and their related extensions. While SHAP can explain the output of any machine learning model, we have developed a high-speed exact algorithm for tree ensemble methods. Fast C++ implementations are supported for XGBoost, LightGBM, CatBoost, scikit-learn and pyspark tree models. To understand how a single feature effects the output of the model we can plot the SHAP value of that feature vs. the value of the feature for all the examples in a dataset. ...
    Downloads: 8 This Week
    Last Update:
    See Project
  • 9
    BindsNET

    BindsNET

    Simulation of spiking neural networks (SNNs) using PyTorch

    A Python package used for simulating spiking neural networks (SNNs) on CPUs or GPUs using PyTorch Tensor functionality. BindsNET is a spiking neural network simulation library geared towards the development of biologically inspired algorithms for machine learning. This package is used as part of ongoing research on applying SNNs to machine learning (ML) and reinforcement learning (RL) problems in the Biologically Inspired Neural & Dynamical Systems (BINDS) lab.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Free and Open Source HR Software Icon
    Free and Open Source HR Software

    OrangeHRM provides a world-class HRIS experience and offers everything you and your team need to be that HR hero you know that you are.

    Give your HR team the tools they need to streamline administrative tasks, support employees, and make informed decisions with the OrangeHRM free and open source HR software.
    Learn More
  • 10
    Thinc

    Thinc

    A refreshing functional take on deep learning

    ...We wrote the new version to let users compose, configure and deploy custom models built with their favorite framework. Switch between PyTorch, TensorFlow and MXNet models without changing your application, or even create mutant hybrids using zero-copy array interchange. Develop faster and catch bugs sooner with sophisticated type checking. Trying to pass a 1-dimensional array into a model that expects two dimensions? That’s a type error. Your editor can pick it up as the code leaves your fingers.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 11
    Rubix ML

    Rubix ML

    A high-level machine learning and deep learning library for PHP

    Rubix ML is a free open-source machine learning (ML) library that allows you to build programs that learn from your data using the PHP language. We provide tools for the entire machine learning life cycle from ETL to training, cross-validation, and production with over 40 supervised and unsupervised learning algorithms. In addition, we provide tutorials and other educational content to help you get started using ML in your projects. Our intuitive interface is quick to grasp while hiding alot of power and complexity. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 12
    Spice.ai OSS

    Spice.ai OSS

    A self-hostable CDN for databases

    ...The Spice runtime, written in Rust, is built-with industry-leading technologies such as Apache DataFusion, Apache Arrow, Apache Arrow Flight, SQLite, and DuckDB. Spice makes it easy and fast to query data from one or more sources using SQL. You can co-locate a managed dataset with your application or machine learning model, and accelerate it with Arrow in-memory, SQLite/DuckDB, or with attached PostgreSQL for fast, high-concurrency, low-latency queries. Accelerated engines give you flexibility and control over query cost and performance.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 13
    Simd Library

    Simd Library

    C++ image processing and machine learning library with using of SIMD

    ...It provides many useful high-performance algorithms for image processing such as pixel format conversion, image scaling and filtration, extraction of statistical information from images, motion detection, object detection and classification, neural networks. The algorithms are optimized with using of different SIMD CPU extensions. In particular, the library supports the following CPU extensions: SSE, AVX, AVX-512, and AMX for x86/x64, and NEON for ARM. The Simd Library has C API and also contains useful C++ classes and functions to facilitate access to C API. The library supports dynamic and static linking, 32-bit and 64-bit Windows and Linux, MSVS, G++ and Clang compilers, MSVS projects, and CMake build systems.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    Transformers

    Transformers

    State-of-the-art Machine Learning for Pytorch, TensorFlow, and JAX

    Transformers provides APIs and tools to easily download and train state-of-the-art pre-trained models. Using pre-trained models can reduce your compute costs, carbon footprint, and save you the time and resources required to train a model from scratch. These models support common tasks in different modalities. Text, for tasks like text classification, information extraction, question answering, summarization, translation, text generation, in over 100 languages.
    Downloads: 6 This Week
    Last Update:
    See Project
  • 15
    .NET for Apache Spark

    .NET for Apache Spark

    A free, open-source, and cross-platform big data analytics framework

    ...This means you can use .NET for Apache Spark anywhere you write .NET code allowing you to reuse all the knowledge, skills, code, and libraries you already have as a .NET developer. .NET for Apache Spark runs on Windows, Linux, and macOS using .NET Core, or Windows using .NET Framework. It also runs on all major cloud providers including Azure HDInsight Spark, Amazon EMR Spark, AWS & Azure Databricks.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    Datasets

    Datasets

    Hub of ready-to-use datasets for ML models

    ...There are currently over 2658 datasets, and more than 34 metrics available. Datasets naturally frees the user from RAM memory limitation, all datasets are memory-mapped using an efficient zero-serialization cost backend (Apache Arrow). Smart caching: never wait for your data to process several times.
    Downloads: 6 This Week
    Last Update:
    See Project
  • 17
    OpenMLDB

    OpenMLDB

    OpenMLDB is an open-source machine learning database

    ...OpenMLDB is an open-source machine learning database that is committed to solving the data and feature challenges. OpenMLDB has been deployed in hundreds of real-world enterprise applications. It prioritizes the capability of feature engineering using SQL for open-source, which offers a feature platform enabling consistent features for training and inference. Real-time features are essential for many machine learning applications, such as real-time personalized recommendations and risk analytics. However, a feature engineering script developed by data scientists (Python scripts in most cases) cannot be directly deployed into production for online inference because it usually cannot meet the engineering requirements, such as low latency, high throughput and high availability.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    TPOT

    TPOT

    A Python Automated Machine Learning tool that optimizes ML

    Consider TPOT your Data Science Assistant. TPOT is a Python Automated Machine Learning tool that optimizes machine learning pipelines using genetic programming. TPOT stands for Tree-based Pipeline Optimization Tool. Consider TPOT your Data Science Assistant. TPOT is a Python Automated Machine Learning tool that optimizes machine learning pipelines using genetic programming.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    Tokenizers

    Tokenizers

    Fast State-of-the-Art Tokenizers optimized for Research and Production

    ...Tokenizers provides an implementation of today’s most used tokenizers, with a focus on performance and versatility. These tokenizers are also used in Transformers. Train new vocabularies and tokenize, using today’s most used tokenizers. Extremely fast (both training and tokenization), thanks to the Rust implementation. Takes less than 20 seconds to tokenize a GB of text on a server’s CPU. Easy to use, but also extremely versatile. Designed for both research and production. Full alignment tracking. Even with destructive normalization, it’s always possible to get the part of the original sentence that corresponds to any token. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    Determined

    Determined

    Determined, deep learning training platform

    ...Build more accurate models faster with scalable hyperparameter search, seamlessly orchestrated by Determined. Use state-of-the-art algorithms and explore results with our hyperparameter search visualizations. Interpret your experiment results using the Determined UI and TensorBoard, and reproduce experiments with artifact tracking. Deploy your model using Determined's built-in model registry. Easily share on-premise or cloud GPUs with your team. Determined’s cluster scheduling offers first-class support for deep learning and seamless spot instance support. Check out examples of how you can use Determined to train popular deep learning models at scale.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    Gradio

    Gradio

    Create UIs for your machine learning model in Python in 3 minutes

    Gradio is the fastest way to demo your machine learning model with a friendly web interface so that anyone can use it, anywhere! Gradio can be installed with pip. Creating a Gradio interface only requires adding a couple lines of code to your project. You can choose from a variety of interface types to interface your function. Gradio can be embedded in Python notebooks or presented as a webpage. A Gradio interface can automatically generate a public link you can share with colleagues that...
    Downloads: 5 This Week
    Last Update:
    See Project
  • 22
    PyBroker

    PyBroker

    Algorithmic Trading in Python with Machine Learning

    Are you looking to enhance your trading strategies with the power of Python and machine learning? Then you need to check out PyBroker! This Python framework is designed for developing algorithmic trading strategies, with a focus on strategies that use machine learning. With PyBroker, you can easily create and fine-tune trading rules, build powerful models, and gain valuable insights into your strategy’s performance.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 23
    OpenVINO Training Extensions

    OpenVINO Training Extensions

    Trainable models and NN optimization tools

    OpenVINO™ Training Extensions provide a convenient environment to train Deep Learning models and convert them using the OpenVINO™ toolkit for optimized inference. When ote_cli is installed in the virtual environment, you can use the ote command line interface to perform various actions for templates related to the chosen task type, such as running, training, evaluating, exporting, etc. ote train trains a model (a particular model template) on a dataset and saves results in two files. ote optimize optimizes a pre-trained model using NNCF or POT depending on the model format. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    TensorFlow Probability

    TensorFlow Probability

    Probabilistic reasoning and statistical analysis in TensorFlow

    ...It's for data scientists, statisticians, ML researchers, and practitioners who want to encode domain knowledge to understand data and make predictions. Since TFP inherits the benefits of TensorFlow, you can build, fit, and deploy a model using a single language throughout the lifecycle of model exploration and production. TFP is open source and available on GitHub. Tools to build deep probabilistic models, including probabilistic layers and a `JointDistribution` abstraction. Variational inference and Markov chain Monte Carlo. A wide selection of probability distributions and bijectors. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    PML

    PML

    The easiest way to use deep metric learning in your application

    ...Anchor-positive pairs are formed by embeddings that share the same label, and anchor-negative pairs are formed by embeddings that have different labels. Loss functions can be customized using distances, reducers, and regularizers. In the diagram below, a miner finds the indices of hard pairs within a batch. These are used to index into the distance matrix, computed by the distance object. For this diagram, the loss function is pair-based, so it computes a loss per pair.
    Downloads: 0 This Week
    Last Update:
    See Project