Showing 596 open source projects for "google-visualization-python"

View related business solutions
  • Cloud-based help desk software with ServoDesk Icon
    Cloud-based help desk software with ServoDesk

    Full access to Enterprise features. No credit card required.

    What if You Could Automate 90% of Your Repetitive Tasks in Under 30 Days? At ServoDesk, we help businesses like yours automate operations with AI, allowing you to cut service times in half and increase productivity by 25% - without hiring more staff.
    Try ServoDesk for free
  • MongoDB Atlas runs apps anywhere Icon
    MongoDB Atlas runs apps anywhere

    Deploy in 115+ regions with the modern database for every enterprise.

    MongoDB Atlas gives you the freedom to build and run modern applications anywhere—across AWS, Azure, and Google Cloud. With global availability in over 115 regions, Atlas lets you deploy close to your users, meet compliance needs, and scale with confidence across any geography.
    Start Free
  • 1
    TensorFlow Object Counting API

    TensorFlow Object Counting API

    The TensorFlow Object Counting API is an open source framework

    The TensorFlow Object Counting API is an open source framework built on top of TensorFlow and Keras that makes it easy to develop object counting systems. Please contact if you need professional object detection & tracking & counting project with super high accuracy and reliability! You can train TensorFlow models with your own training data to built your own custom object counter system! If you want to learn how to do it, please check one of the sample projects, which cover some of the...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    NLP Best Practices

    NLP Best Practices

    Natural Language Processing Best Practices & Examples

    In recent years, natural language processing (NLP) has seen quick growth in quality and usability, and this has helped to drive business adoption of artificial intelligence (AI) solutions. In the last few years, researchers have been applying newer deep learning methods to NLP. Data scientists started moving from traditional methods to state-of-the-art (SOTA) deep neural network (DNN) algorithms which use language models pretrained on large text corpora. This repository contains examples and...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    NLP-progress

    NLP-progress

    Repository to track the progress in Natural Language Processing (NLP)

    Repository to track the progress in Natural Language Processing (NLP), including the datasets and the current state-of-the-art for the most common NLP tasks. This document aims to track the progress in Natural Language Processing (NLP) and give an overview of the state-of-the-art (SOTA) across the most common NLP tasks and their corresponding datasets. It aims to cover both traditional and core NLP tasks such as dependency parsing and part-of-speech tagging as well as more recent ones such...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    Python Machine Learning

    Python Machine Learning

    The "Python Machine Learning (2nd edition)" book code repository

    This repository accompanies the well-known textbook “Python Machine Learning, 2nd Edition” by Sebastian Raschka and Vahid Mirjalili, serving as a complete codebase of examples, notebooks, scripts and supporting materials for the book. It covers a wide range of topics including supervised learning, unsupervised learning, dimensionality reduction, model evaluation, deep learning with TensorFlow, and embedding models into web apps.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • 5
    BytePS

    BytePS

    A high performance and generic framework for distributed DNN training

    BytePS is a high-performance and generally distributed training framework. It supports TensorFlow, Keras, PyTorch, and MXNet, and can run on either TCP or RDMA networks. BytePS outperforms existing open-sourced distributed training frameworks by a large margin. For example, on BERT-large training, BytePS can achieve ~90% scaling efficiency with 256 GPUs (see below), which is much higher than Horovod+NCCL. In certain scenarios, BytePS can double the training speed compared with Horovod+NCCL....
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    Image Super-Resolution (ISR)

    Image Super-Resolution (ISR)

    Super-scale your images and run experiments with Residual Dense

    ...The weights used to produce these images are available directly when creating the model object. ISR is compatible with Python 3.6 and is distributed under the Apache 2.0 license.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 7
    imgaug

    imgaug

    Image augmentation for machine learning experiments

    imgaug is a library for image augmentation in machine learning experiments. It supports a wide range of augmentation techniques, allows to easily combine these and to execute them in random order or on multiple CPU cores, has a simple yet powerful stochastic interface and can not only augment images but also key points/landmarks, bounding boxes, heatmaps and segmentation maps. Affine transformations, perspective transformations, contrast changes, gaussian noise, dropout of regions,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    CrypTen

    CrypTen

    A framework for Privacy Preserving Machine Learning

    CrypTen is a research framework developed by Facebook Research for privacy-preserving machine learning built directly on top of PyTorch. It provides a secure and intuitive environment for performing computations on encrypted data using Secure Multiparty Computation (SMPC). Designed to make secure computation accessible to machine learning practitioners, CrypTen introduces a CrypTensor object that behaves like a regular PyTorch tensor, allowing users to seamlessly apply automatic...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    textgenrnn

    textgenrnn

    Easily train your own text-generating neural network

    With textgenrnn you can easily train your own text-generating neural network of any size and complexity on any text dataset with a few lines of code. A modern neural network architecture that utilizes new techniques as attention-weighting and skip-embedding to accelerate training and improve model quality. Train on and generate text at either the character-level or word-level. Configure RNN size, the number of RNN layers, and whether to use bidirectional RNNs. Train on any generic input text...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Keep company data safe with Chrome Enterprise Icon
    Keep company data safe with Chrome Enterprise

    Protect your business with AI policies and data loss prevention in the browser

    Make AI work your way with Chrome Enterprise. Block unapproved sites and set custom data controls that align with your company's policies.
    Download Chrome
  • 10
    Spinning Up in Deep RL

    Spinning Up in Deep RL

    Educational resource to help anyone learn deep reinforcement learning

    Welcome to Spinning Up in Deep RL! This is an educational resource produced by OpenAI that makes it easier to learn about deep reinforcement learning (deep RL). For the unfamiliar, reinforcement learning (RL) is a machine learning approach for teaching agents how to solve tasks by trial and error. Deep RL refers to the combination of RL with deep learning. At OpenAI, we believe that deep learning generally, and deep reinforcement learning specifically, will play central roles in the...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    MMSkeleton

    MMSkeleton

    A OpenMMLAB toolbox for human pose estimation, skeleton-based action

    MMSkeleton is an open-source toolbox for skeleton-based human understanding. It is a part of the open-mmlab project in the charge of Multimedia Laboratory, CUHK. MMSkeleton is developed on our research project ST-GCN. MMSkeleton provides a flexible framework for organizing codes and projects systematically, with the ability to extend to various tasks and scale up to complex deep models. MMSkeleton addresses to multiple tasks in human understanding. Build a custom skeleton-based dataset....
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    Texar

    Texar

    Toolkit for Machine Learning, Natural Language Processing

    Texar is a toolkit aiming to support a broad set of machine learning, especially natural language processing and text generation tasks. Texar provides a library of easy-to-use ML modules and functionalities for composing whatever models and algorithms. The tool is designed for both researchers and practitioners for fast prototyping and experimentation. Texar was originally developed and is actively contributed by Petuum and CMU in collaboration with other institutes. A mirror of this...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    Deep Learning with PyTorch

    Deep Learning with PyTorch

    Latest techniques in deep learning and representation learning

    ...The prerequisites include DS-GA 1001 Intro to Data Science or a graduate-level machine learning course. To be able to follow the exercises, you are going to need a laptop with Miniconda (a minimal version of Anaconda) and several Python packages installed. The following instruction would work as is for Mac or Ubuntu Linux users, Windows users would need to install and work in the Git BASH terminal. JupyterLab has a built-in selectable dark theme, so you only need to install something if you want to use the classic notebook interface.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    Deep Learning Drizzle

    Deep Learning Drizzle

    Drench yourself in Deep Learning, Reinforcement Learning

    Drench yourself in Deep Learning, Reinforcement Learning, Machine Learning, Computer Vision, and NLP by learning from these exciting lectures! Optimization courses which form the foundation for ML, DL, RL. Computer Vision courses which are DL & ML heavy. Speech recognition courses which are DL heavy. Structured Courses on Geometric, Graph Neural Networks. Section on Autonomous Vehicles. Section on Computer Graphics with ML/DL focus.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    PyTorch Natural Language Processing

    PyTorch Natural Language Processing

    Basic Utilities for PyTorch Natural Language Processing (NLP)

    PyTorch-NLP is a library for Natural Language Processing (NLP) in Python. It’s built with the very latest research in mind, and was designed from day one to support rapid prototyping. PyTorch-NLP comes with pre-trained embeddings, samplers, dataset loaders, metrics, neural network modules and text encoders. It’s open-source software, released under the BSD3 license. With your batch in hand, you can use PyTorch to develop and train your model using gradient descent.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    Dive-into-DL-TensorFlow2.0

    Dive-into-DL-TensorFlow2.0

    Dive into Deep Learning

    This project changes the MXNet code implementation in the original book "Learning Deep Learning by Hand" to TensorFlow2 implementation. After consulting Mr. Li Mu by the tutor of archersama , the implementation of this project has been agreed by Mr. Li Mu. Original authors: Aston Zhang, Li Mu, Zachary C. Lipton, Alexander J. Smola and other community contributors. There are some differences between the Chinese and English versions of this book . This project mainly focuses on TensorFlow2...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    MatchZoo

    MatchZoo

    Facilitating the design, comparison and sharing of deep text models

    The goal of MatchZoo is to provide a high-quality codebase for deep text matching research, such as document retrieval, question answering, conversational response ranking, and paraphrase identification. With the unified data processing pipeline, simplified model configuration and automatic hyper-parameters tunning features equipped, MatchZoo is flexible and easy to use. Preprocess your input data in three lines of code, keep track parameters to be passed into the model. Make use of MatchZoo...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    NiftyNet

    NiftyNet

    An open-source convolutional neural networks platform for research

    An open-source convolutional neural networks platform for medical image analysis and image-guided therapy. NiftyNet is a TensorFlow-based open-source convolutional neural networks (CNNs) platform for research in medical image analysis and image-guided therapy. NiftyNet’s modular structure is designed for sharing networks and pre-trained models. Using this modular structure you can get started with established pre-trained networks using built-in tools. Adapt existing networks to your imaging...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    nGraph

    nGraph

    nGraph has moved to OpenVINO

    Frameworks using nGraph Compiler stack to execute workloads have shown up to 45X performance boost when compared to native framework implementations. We've also seen performance boosts running workloads that are not included on the list of Validated workloads, thanks to nGraph's powerful subgraph pattern matching. Additionally, we have integrated nGraph with PlaidML to provide deep learning performance acceleration on Intel, nVidia, & AMD GPUs. nGraph Compiler aims to accelerate developing...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    Spotlight

    Spotlight

    Deep recommender models using PyTorch

    Spotlight uses PyTorch to build both deep and shallow recommender models. By providing both a slew of building blocks for loss functions (various pointwise and pairwise ranking losses), representations (shallow factorization representations, deep sequence models), and utilities for fetching (or generating) recommendation datasets, it aims to be a tool for rapid exploration and prototyping of new recommender models. Spotlight offers a slew of popular datasets, including Movielens 100K, 1M,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    DCVGAN

    DCVGAN

    DCVGAN: Depth Conditional Video Generation, ICIP 2019.

    This paper proposes a new GAN architecture for video generation with depth videos and color videos. The proposed model explicitly uses the information of depth in a video sequence as additional information for a GAN-based video generation scheme to make the model understands scene dynamics more accurately. The model uses pairs of color video and depth video for training and generates a video using the two steps. Generate the depth video to model the scene dynamics based on the geometrical...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    Coach

    Coach

    Enables easy experimentation with state of the art algorithms

    Coach is a python framework that models the interaction between an agent and an environment in a modular way. With Coach, it is possible to model an agent by combining various building blocks, and training the agent on multiple environments. The available environments allow testing the agent in different fields such as robotics, autonomous driving, games and more.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23

    OpenFace

    A state-of-the-art facial behavior analysis toolkit

    OpenFace is an advanced facial behavior analysis toolkit intended for computer vision and machine learning researchers, those in the affective computing community, and those who are simply interested in creating interactive applications based on facial behavior analysis. The OpenFace toolkit is capable of performing several complex facial analysis tasks, including facial landmark detection, eye-gaze estimation, head pose estimation and facial action unit recognition. OpenFace is able to...
    Downloads: 22 This Week
    Last Update:
    See Project
  • 24
    Activity Recognition

    Activity Recognition

    Resources about activity recognition

    ...It is not a single integrated software package but rather a knowledge base organizing feature extraction methods, deep learning approaches, transfer learning strategies, datasets, and representative research in behavior recognition. The repository includes links to code in MATLAB, Python, summaries of algorithms, datasets, and relevant research papers. Feature extraction method summaries (e.g. motion, sensor, vision). Deep learning for activity recognition references.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    Facets

    Facets

    Visualizations for machine learning datasets

    The power of machine learning comes from its ability to learn patterns from large amounts of data. Understanding your data is critical to building a powerful machine learning system. Facets contains two robust visualizations to aid in understanding and analyzing machine learning datasets. Get a sense of the shape of each feature of your dataset using Facets Overview, or explore individual observations using Facets Dive. Explore Facets Overview and Facets Dive on the UCI Census Income...
    Downloads: 5 This Week
    Last Update:
    See Project