Showing 569 open source projects for "python::module"

View related business solutions
  • Cloud-based help desk software with ServoDesk Icon
    Cloud-based help desk software with ServoDesk

    Full access to Enterprise features. No credit card required.

    What if You Could Automate 90% of Your Repetitive Tasks in Under 30 Days? At ServoDesk, we help businesses like yours automate operations with AI, allowing you to cut service times in half and increase productivity by 25% - without hiring more staff.
    Try ServoDesk for free
  • Build Securely on Azure with Proven Frameworks Icon
    Build Securely on Azure with Proven Frameworks

    Lay a foundation for success with Tested Reference Architectures developed by Fortinet’s experts. Learn more in this white paper.

    Moving to the cloud brings new challenges. How can you manage a larger attack surface while ensuring great network performance? Turn to Fortinet’s Tested Reference Architectures, blueprints for designing and securing cloud environments built by cybersecurity experts. Learn more and explore use cases in this white paper.
    Download Now
  • 1
    SageMaker Scikit-Learn Extension

    SageMaker Scikit-Learn Extension

    A library of additional estimators and SageMaker tools based on scikit

    ...This project contains standalone scikit-learn estimators and additional tools to support SageMaker Autopilot. Many of the additional estimators are based on existing scikit-learn estimators. SageMaker Scikit-Learn Extension is a Python module for machine learning built on top of scikit-learn. In order to use the I/O functionalies in the sagemaker_sklearn_extension.externals module, you will also need to install the mlio version 0.7 package via conda. The mlio package is only available through conda at the moment. You can also install from source by cloning this repository and running a pip install command in the root directory of the repository. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    LayoutParser

    LayoutParser

    A Unified Toolkit for Deep Learning Based Document Image Analysis

    With the help of state-of-the-art deep learning models, Layout Parser enables extracting complicated document structures using only several lines of code. This method is also more robust and generalizable as no sophisticated rules are involved in this process. A complete instruction for installing the main Layout Parser library and auxiliary components. Learn how to load DL Layout models and use them for layout detection. The full list of layout models currently available in Layout Parser....
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    YOLOv3

    YOLOv3

    Object detection architectures and models pretrained on the COCO data

    Fast, precise and easy to train, YOLOv5 has a long and successful history of real time object detection. Treat YOLOv5 as a university where you'll feed your model information for it to learn from and grow into one integrated tool. You can get started with less than 6 lines of code. with YOLOv5 and its Pytorch implementation. Have a go using our API by uploading your own image and watch as YOLOv5 identifies objects using our pretrained models. Start training your model without being an...
    Downloads: 143 This Week
    Last Update:
    See Project
  • 4
    TensorFlow Backend for ONNX

    TensorFlow Backend for ONNX

    Tensorflow Backend for ONNX

    Open Neural Network Exchange (ONNX) is an open standard format for representing machine learning models. ONNX is supported by a community of partners who have implemented it in many frameworks and tools. TensorFlow Backend for ONNX makes it possible to use ONNX models as input for TensorFlow. The ONNX model is first converted to a TensorFlow model and then delegated for execution on TensorFlow to produce the output. This is one of the two TensorFlow converter projects which serve different...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Free and Open Source HR Software Icon
    Free and Open Source HR Software

    OrangeHRM provides a world-class HRIS experience and offers everything you and your team need to be that HR hero you know that you are.

    Give your HR team the tools they need to streamline administrative tasks, support employees, and make informed decisions with the OrangeHRM free and open source HR software.
    Learn More
  • 5
    Machine Learning PyTorch Scikit-Learn

    Machine Learning PyTorch Scikit-Learn

    Code Repository for Machine Learning with PyTorch and Scikit-Learn

    Initially, this project started as the 4th edition of Python Machine Learning. However, after putting so much passion and hard work into the changes and new topics, we thought it deserved a new title. So, what’s new? There are many contents and additions, including the switch from TensorFlow to PyTorch, new chapters on graph neural networks and transformers, a new section on gradient boosting, and many more that I will detail in a separate blog post.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 6
    lightning library

    lightning library

    Large-scale linear classification, regression and ranking in Python

    lightning is a library for large-scale linear classification, regression and ranking in Python.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    Hugging Face Transformer

    Hugging Face Transformer

    CPU/GPU inference server for Hugging Face transformer models

    Optimize and deploy in production Hugging Face Transformer models in a single command line. At Lefebvre Dalloz we run in-production semantic search engines in the legal domain, in the non-marketing language it's a re-ranker, and we based ours on Transformer. In that setup, latency is key to providing a good user experience, and relevancy inference is done online for hundreds of snippets per user query. Most tutorials on Transformer deployment in production are built over Pytorch and FastAPI....
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    AWS Step Functions Data Science SDK

    AWS Step Functions Data Science SDK

    For building machine learning (ML) workflows and pipelines on AWS

    The AWS Step Functions Data Science SDK is an open-source library that allows data scientists to easily create workflows that process and publish machine learning models using Amazon SageMaker and AWS Step Functions. You can create machine learning workflows in Python that orchestrate AWS infrastructure at scale, without having to provision and integrate the AWS services separately. The best way to quickly review how the AWS Step Functions Data Science SDK works is to review the related example notebooks. These notebooks provide code and descriptions for creating and running workflows in AWS Step Functions Using the AWS Step Functions Data Science SDK. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    mlcourse.ai

    mlcourse.ai

    Open Machine Learning Course

    mlcourse.ai is an open Machine Learning course by OpenDataScience (ods.ai), led by Yury Kashnitsky (yorko). Having both a Ph.D. degree in applied math and a Kaggle Competitions Master tier, Yury aimed at designing an ML course with a perfect balance between theory and practice. Thus, the course meets you with math formulae in lectures, and a lot of practice in a form of assignments and Kaggle Inclass competitions. Currently, the course is in a self-paced mode. Here we guide you through the...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Desktop and Mobile Device Management Software Icon
    Desktop and Mobile Device Management Software

    It's a modern take on desktop management that can be scaled as per organizational needs.

    Desktop Central is a unified endpoint management (UEM) solution that helps in managing servers, laptops, desktops, smartphones, and tablets from a central location.
    Learn More
  • 10
    Graph4NLP

    Graph4NLP

    Graph4nlp is the library for the easy use of Graph Neural Networks

    ...The architecture of Graph4NLP is shown in the following figure, where boxes with dashed lines represent the features under development. Graph4NLP consists of four different layers: 1) Data Layer, 2) Module Layer, 3) Model Layer, and 4) Application Layer. Graph4nlp aims to make it incredibly easy to use GNNs in NLP tasks (check out Graph4NLP Documentation).
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    Feature-engine

    Feature-engine

    Feature engineering package with sklearn like functionality

    Feature-engine is a Python library with multiple transformers to engineer and select features for use in machine learning models. Feature-engine's transformers follow Scikit-learn's functionality with fit() and transform() methods to learn the transforming parameters from the data and then transform it.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    Face Mask Detection

    Face Mask Detection

    Face Mask Detection system based on computer vision and deep learning

    Face Mask Detection system based on computer vision and deep learning using OpenCV and Tensorflow/Keras. Face Mask Detection System built with OpenCV, Keras/TensorFlow using Deep Learning and Computer Vision concepts in order to detect face masks in static images as well as in real-time video streams. Amid the ongoing COVID-19 pandemic, there are no efficient face mask detection applications which are now in high demand for transportation means, densely populated areas, residential...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 13
    Awesome Fraud Detection Research Papers

    Awesome Fraud Detection Research Papers

    A curated list of data mining papers about fraud detection

    A curated list of data mining papers about fraud detection from several conferences.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 14
    Awesome Decision Tree Papers

    Awesome Decision Tree Papers

    A collection of research papers on decision, classification, etc.

    A collection of research papers on decision, classification and regression trees with implementations.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    igel

    igel

    Machine learning tool that allows you to train and test models

    A delightful machine learning tool that allows you to train/fit, test, and use models without writing code. The goal of the project is to provide machine learning for everyone, both technical and non-technical users. I sometimes needed a tool sometimes, which I could use to fast create a machine learning prototype. Whether to build some proof of concept, create a fast draft model to prove a point or use auto ML. I find myself often stuck writing boilerplate code and thinking too much about...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    Reformer PyTorch

    Reformer PyTorch

    Reformer, the efficient Transformer, in Pytorch

    This is a Pytorch implementation of Reformer. It includes LSH attention, reversible network, and chunking. It has been validated with an auto-regressive task (enwik8).
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    Trax

    Trax

    Deep learning with clear code and speed

    ...Trax has bindings to a large number of deep learning datasets, including Tensor2Tensor and TensorFlow datasets. You can use Trax either as a library from your own python scripts and notebooks or as a binary from the shell, which can be more convenient for training large models. It runs without any changes on CPUs, GPUs and TPUs.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    TorchGAN

    TorchGAN

    Research Framework for easy and efficient training of GANs

    The torchgan package consists of various generative adversarial networks and utilities that have been found useful in training them. This package provides an easy-to-use API which can be used to train popular GANs as well as develop newer variants. The core idea behind this project is to facilitate easy and rapid generative adversarial model research. TorchGAN is a Pytorch-based framework for designing and developing Generative Adversarial Networks. This framework has been designed to...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    Scikit-Optimize

    Scikit-Optimize

    Sequential model-based optimization with a `scipy.optimize` interface

    Scikit-Optimize, or skopt, is a simple and efficient library to minimize (very) expensive and noisy black-box functions. It implements several methods for sequential model-based optimization. skopt aims to be accessible and easy to use in many contexts. The library is built on top of NumPy, SciPy and Scikit-Learn.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    TensorRT Pro

    TensorRT Pro

    C++ library based on tensorrt integration

    High-level interface for C++/Python. Simplify the implementation of the custom plugin. And serialization and deserialization have been encapsulated for easier usage. Simplify the compilation of fp32, fp16 and int8 for facilitating the deployment with C++/Python in server or embedded device. Models ready for use also with examples are RetinaFace, Scrfd, YoloV5, YoloX, Arcface, AlphaPose, CenterNet and DeepSORT(C++).
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    Machine Learning course

    Machine Learning course

    Open Machine Learning course

    The first semester of the giraffe-ai Machine Learning course. Open Machine Learning course.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    Perceptual Similarity Metric and Dataset

    Perceptual Similarity Metric and Dataset

    LPIPS metric. pip install lpips

    While it is nearly effortless for humans to quickly assess the perceptual similarity between two images, the underlying processes are thought to be quite complex. Despite this, the most widely used perceptual metrics today, such as PSNR and SSIM, are simple, shallow functions, and fail to account for many nuances of human perception. Recently, the deep learning community has found that features of the VGG network trained on ImageNet classification has been remarkably useful as a training...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    Tez

    Tez

    Tez is a super-simple and lightweight Trainer for PyTorch

    Tez is a super-simple and lightweight Trainer for PyTorch. It also comes with many utils that you can use to tackle over 90% of deep learning projects in PyTorch. tez (तेज़ / تیز) means sharp, fast & active. This is a simple, to-the-point, library to make your PyTorch training easy. This library is in early-stage currently! So, there might be breaking changes. Currently, tez supports cpu, single gpu and multi-gpu & tpu training. More coming soon! Using tez is super-easy. We don't want you to...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    BlazingSQL

    BlazingSQL

    BlazingSQL is a lightweight, GPU accelerated, SQL engine for Python

    BlazingSQL is a GPU-accelerated SQL engine built on top of the RAPIDS ecosystem. RAPIDS is based on the Apache Arrow columnar memory format, and cuDF is a GPU DataFrame library for loading, joining, aggregating, filtering, and otherwise manipulating data. BlazingSQL is a SQL interface for cuDF, with various features to support large-scale data science workflows and enterprise datasets.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    CleverHans

    CleverHans

    An adversarial example library for constructing attacks

    This repository contains the source code for CleverHans, a Python library to benchmark machine learning systems' vulnerability to adversarial examples. You can learn more about such vulnerabilities on the accompanying blog. The CleverHans library is under continual development, always welcoming contributions of the latest attacks and defenses. In particular, we always welcome help with resolving the issues currently open.
    Downloads: 0 This Week
    Last Update:
    See Project