Showing 544 open source projects for "python source"

View related business solutions
  • Cut Data Warehouse Costs up to 54% with BigQuery Icon
    Cut Data Warehouse Costs up to 54% with BigQuery

    Migrate from Snowflake, Databricks, or Redshift with free migration tools. Exabyte scale without the Exabyte price.

    BigQuery delivers up to 54% lower TCO than cloud alternatives. Migrate from legacy or competing warehouses using free BigQuery Migration Service with automated SQL translation. Get serverless scale with no infrastructure to manage, compressed storage, and flexible pricing—pay per query or commit for deeper discounts. New customers get $300 in free credit.
    Try BigQuery Free
  • $300 in Free Credit for Your Google Cloud Projects Icon
    $300 in Free Credit for Your Google Cloud Projects

    Build, test, and explore on Google Cloud with $300 in free credit. No hidden charges. No surprise bills.

    Launch your next project with $300 in free Google Cloud credit—no hidden charges. Test, build, and deploy without risk. Use your credit across the Google Cloud platform to find what works best for your needs. After your credits are used, continue building with free monthly usage products. Only pay when you're ready to scale. Sign up in minutes and start exploring.
    Start Free Trial
  • 1
    MMClassification

    MMClassification

    OpenMMLab Image Classification Toolbox and Benchmark

    MMClassification is an open-source image classification toolbox based on PyTorch. It is a part of the OpenMMLab project. Supports DenseNet, VAN and PoolFormer, and provide pre-trained models. Supports training on IPU. Supports a series of CSP networks, such as CSP-ResNet, CSP-ResNeXt and CSP-DarkNet. MMClassification is an open source project that is contributed by researchers and engineers from various colleges and companies.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    OpenNMT-tf

    OpenNMT-tf

    Neural machine translation and sequence learning using TensorFlow

    OpenNMT is an open-source ecosystem for neural machine translation and neural sequence learning. OpenNMT-tf is a general-purpose sequence learning toolkit using TensorFlow 2. While neural machine translation is the main target task, it has been designed to more generally support sequence-to-sequence mapping, sequence tagging, sequence classification, language modeling. Models are described with code to allow training custom architectures and overriding default behavior. For example, the...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    MetaTransformer

    MetaTransformer

    Meta-Transformer for Unified Multimodal Learning

    We're thrilled to present OneLLM, an ensembling Meta-Transformer framework with Multimodal Large Language Models, which performs multimodal joint training, supports more modalities including fMRI, Depth, and Normal Maps, and demonstrates very impressive performances on 25 benchmarks.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    hloc

    hloc

    Visual localization made easy with hloc

    This is hloc, a modular toolbox for state-of-the-art 6-DoF visual localization. It implements Hierarchical Localization, leveraging image retrieval and feature matching, and is fast, accurate, and scalable. This codebase won the indoor/outdoor localization challenges at CVPR 2020 and ECCV 2020, in combination with SuperGlue, our graph neural network for feature matching. We provide step-by-step guides to localize with Aachen, InLoc, and to generate reference poses for your own data using...
    Downloads: 0 This Week
    Last Update:
    See Project
  • AI-generated apps that pass security review Icon
    AI-generated apps that pass security review

    Stop waiting on engineering. Build production-ready internal tools with AI—on your company data, in your cloud.

    Retool lets you generate dashboards, admin panels, and workflows directly on your data. Type something like “Build me a revenue dashboard on my Stripe data” and get a working app with security, permissions, and compliance built in from day one. Whether on our cloud or self-hosted, create the internal software your team needs without compromising enterprise standards or control.
    Try Retool free
  • 5
    CausalNex

    CausalNex

    A Python library that helps data scientists to infer causation

    CausalNex is a Python library that uses Bayesian Networks to combine machine learning and domain expertise for causal reasoning. You can use CausalNex to uncover structural relationships in your data, learn complex distributions, and observe the effect of potential interventions.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 6
    AI Explainability 360

    AI Explainability 360

    Interpretability and explainability of data and machine learning model

    The AI Explainability 360 toolkit is an open-source library that supports the interpretability and explainability of datasets and machine learning models. The AI Explainability 360 Python package includes a comprehensive set of algorithms that cover different dimensions of explanations along with proxy explainability metrics. The AI Explainability 360 interactive experience provides a gentle introduction to the concepts and capabilities by walking through an example use case for different consumer personas. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    MMOCR

    MMOCR

    OpenMMLab Text Detection, Recognition and Understanding Toolbox

    MMOCR is an open-source toolbox based on PyTorch and mmdetection for text detection, text recognition, and the corresponding downstream tasks including key information extraction. It is part of the OpenMMLab project. The toolbox supports not only text detection and text recognition, but also their downstream tasks such as key information extraction. The toolbox supports a wide variety of state-of-the-art models for text detection, text recognition and key information extraction. The modular...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    Lightning Bolts

    Lightning Bolts

    Toolbox of models, callbacks, and datasets for AI/ML researchers

    Bolts package provides a variety of components to extend PyTorch Lightning, such as callbacks & datasets, for applied research and production. Torch ORT converts your model into an optimized ONNX graph, speeding up training & inference when using NVIDIA or AMD GPUs. We can introduce sparsity during fine-tuning with SparseML, which ultimately allows us to leverage the DeepSparse engine to see performance improvements at inference time.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    pyts

    pyts

    A Python package for time series classification

    pyts is a Python package dedicated to time series classification. It aims to make time series classification easily accessible by providing preprocessing and utility tools, and implementations of several time series classification algorithms. The package comes up with many unit tests and continuous integration ensures new code integration and backward compatibility. The package is distributed under the 3-clause BSD license.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Easily Host LLMs and Web Apps on Cloud Run Icon
    Easily Host LLMs and Web Apps on Cloud Run

    Run everything from popular models with on-demand NVIDIA L4 GPUs to web apps without infrastructure management.

    Run frontend and backend services, batch jobs, host LLMs, and queue processing workloads without the need to manage infrastructure. Cloud Run gives you on-demand GPU access for hosting LLMs and running real-time AI—with 5-second cold starts and automatic scale-to-zero so you only pay for actual usage. New customers get $300 in free credit to start.
    Try Cloud Run Free
  • 10
    Lightning Flash

    Lightning Flash

    Flash enables you to easily configure and run complex AI recipes

    Your PyTorch AI Factory, Flash enables you to easily configure and run complex AI recipes for over 15 tasks across 7 data domains. In a nutshell, Flash is the production-grade research framework you always dreamed of but didn't have time to build. All data loading in Flash is performed via a from_* classmethod on a DataModule. Which DataModule to use and which from_* methods are available depends on the task you want to perform. For example, for image segmentation where your data is stored...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 11
    Transformer Reinforcement Learning X

    Transformer Reinforcement Learning X

    A repo for distributed training of language models with Reinforcement

    trlX is a distributed training framework designed from the ground up to focus on fine-tuning large language models with reinforcement learning using either a provided reward function or a reward-labeled dataset. Training support for Hugging Face models is provided by Accelerate-backed trainers, allowing users to fine-tune causal and T5-based language models of up to 20B parameters, such as facebook/opt-6.7b, EleutherAI/gpt-neox-20b, and google/flan-t5-xxl. For models beyond 20B parameters,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    Horovod

    Horovod

    Distributed training framework for TensorFlow, Keras, PyTorch, etc.

    Horovod was originally developed by Uber to make distributed deep learning fast and easy to use, bringing model training time down from days and weeks to hours and minutes. With Horovod, an existing training script can be scaled up to run on hundreds of GPUs in just a few lines of Python code. Horovod can be installed on-premise or run out-of-the-box in cloud platforms, including AWS, Azure, and Databricks. Horovod can additionally run on top of Apache Spark, making it possible to unify data...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    Spektral

    Spektral

    Graph Neural Networks with Keras and Tensorflow 2

    Spektral is a Python library for graph deep learning, based on the Keras API and TensorFlow 2. The main goal of this project is to provide a simple but flexible framework for creating graph neural networks (GNNs). You can use Spektral for classifying the users of a social network, predicting molecular properties, generating new graphs with GANs, clustering nodes, predicting links, and any other task where data is described by graphs. Spektral implements some of the most popular layers for...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    TensorFlow Ranking

    TensorFlow Ranking

    Learning to rank in TensorFlow

    TensorFlow Ranking is a library for Learning-to-Rank (LTR) techniques on the TensorFlow platform. Commonly used loss functions including pointwise, pairwise, and listwise losses. Commonly used ranking metrics like Mean Reciprocal Rank (MRR) and Normalized Discounted Cumulative Gain (NDCG). Multi-item (also known as groupwise) scoring functions. LambdaLoss implementation for direct ranking metric optimization. Unbiased Learning-to-Rank from biased feedback data. We envision that this library...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    TF2DeepFloorplan

    TF2DeepFloorplan

    TF2 Deep FloorPlan Recognition using a Multi-task Network

    TF2 Deep FloorPlan Recognition using a Multi-task Network with Room-boundary-Guided Attention. Enable tensorboard, quantization, flask, tflite, docker, github actions and google colab. This repo contains a basic procedure to train and deploy the DNN model suggested by the paper 'Deep Floor Plan Recognition using a Multi-task Network with Room-boundary-Guided Attention'. It rewrites the original codes from zlzeng/DeepFloorplan into newer versions of Tensorflow and Python.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 16
    TensorFlow Documentation

    TensorFlow Documentation

    TensorFlow documentation

    An end-to-end platform for machine learning. TensorFlow makes it easy to create ML models that can run in any environment. Learn how to use the intuitive APIs through interactive code samples.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 17

    Lumi-HSP

    This is an AI language model that can predict Heart failure or stroke

    Using thsi AI model, you can predict the chances of heart stroke and heart failure. HIGLIGHTS : 1. Accuracy of this model is 95% 2. This model uses the powerful Machine Learning algorithm "GradientBoosting" for predicting the outcomes. 3. An easy to use model and accessible to everyone.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    sense2vec

    sense2vec

    Contextually-keyed word vectors

    sense2vec (Trask et. al, 2015) is a nice twist on word2vec that lets you learn more interesting and detailed word vectors. This library is a simple Python implementation for loading, querying and training sense2vec models. For more details, check out our blog post. To explore the semantic similarities across all Reddit comments of 2015 and 2019, see the interactive demo.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    OGB

    OGB

    Benchmark datasets, data loaders, and evaluators for graph machine

    The Open Graph Benchmark (OGB) is a collection of realistic, large-scale, and diverse benchmark datasets for machine learning on graphs. OGB datasets are automatically downloaded, processed, and split using the OGB Data Loader. The model performance can be evaluated using the OGB Evaluator in a unified manner. OGB is a community-driven initiative in active development. We expect the benchmark datasets to evolve. OGB provides a diverse set of challenging and realistic benchmark datasets that...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    smclarify

    smclarify

    Fairness aware machine learning. Bias detection and mitigation

    Fairness Aware Machine Learning. Bias detection and mitigation for datasets and models. A facet is column or feature that will be used to measure bias against. A facet can have value(s) that designates that sample as "sensitive". Bias detection and mitigation for datasets and models. The label is a column or feature which is the target for training a machine learning model. The label can have value(s) that designates that sample as having a "positive" outcome. A bias measure is a function...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    LightFM

    LightFM

    A Python implementation of LightFM, a hybrid recommendation algorithm

    LightFM is a Python implementation of a number of popular recommendation algorithms for both implicit and explicit feedback, including efficient implementation of BPR and WARP ranking losses. It's easy to use, fast (via multithreaded model estimation), and produces high-quality results. It also makes it possible to incorporate both item and user metadata into the traditional matrix factorization algorithms. It represents each user and item as the sum of the latent representations of their...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    DIG

    DIG

    A library for graph deep learning research

    The key difference with current graph deep learning libraries, such as PyTorch Geometric (PyG) and Deep Graph Library (DGL), is that, while PyG and DGL support basic graph deep learning operations, DIG provides a unified testbed for higher level, research-oriented graph deep learning tasks, such as graph generation, self-supervised learning, explainability, 3D graphs, and graph out-of-distribution. If you are working or plan to work on research in graph deep learning, DIG enables you to...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    MLPACK is a C++ machine learning library with emphasis on scalability, speed, and ease-of-use. Its aim is to make machine learning possible for novice users by means of a simple, consistent API, while simultaneously exploiting C++ language features to provide maximum performance and flexibility for expert users. * More info + downloads: https://mlpack.org * Git repo: https://github.com/mlpack/mlpack
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    T81 558

    T81 558

    Applications of Deep Neural Networks

    Deep learning is a group of exciting new technologies for neural networks. Through a combination of advanced training techniques and neural network architectural components, it is now possible to create neural networks that can handle tabular data, images, text, and audio as both input and output. Deep learning allows a neural network to learn hierarchies of information in a way that is like the function of the human brain. This course will introduce the student to classic neural network...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    Keras Attention Mechanism

    Keras Attention Mechanism

    Attention mechanism Implementation for Keras

    Many-to-one attention mechanism for Keras. We demonstrate that using attention yields a higher accuracy on the IMDB dataset. We consider two LSTM networks: one with this attention layer and the other one with a fully connected layer. Both have the same number of parameters for a fair comparison (250K). The attention is expected to be the highest after the delimiters. An overview of the training is shown below, where the top represents the attention map and the bottom the ground truth. As the...
    Downloads: 0 This Week
    Last Update:
    See Project
MongoDB Logo MongoDB