Showing 534 open source projects for "python for windows"

View related business solutions
  • Grafana: The open and composable observability platform Icon
    Grafana: The open and composable observability platform

    Faster answers, predictable costs, and no lock-in built by the team helping to make observability accessible to anyone.

    Grafana is the open source analytics & monitoring solution for every database.
    Learn More
  • BoldTrail Real Estate CRM Icon
    BoldTrail Real Estate CRM

    A first-of-its-kind homeownership solution that puts YOU at the center of the coveted lifetime consumer relationship.

    BoldTrail, the #1 rated real estate platform, is built to power your entire brokerage with next-generation technology your agents will use and love. Showcase your unique brand with customizable websites for your company, offices, and every agent. Maximize lead capture with a modern, portal-like consumer search experience and intelligent behavior tracking. Hyper-local area pages, home valuation pages and options for rich lifestyle data keep customers searching with your brokerage as the local experts. The most robust lead gen tools on the market help your brokerage, teams & agents effectively drive new business - no matter their budget. Empower your agents to generate free leads instantly with our simple to use landing pages & IDX squeeze pages. Drive more leads with higher quality and lower cost through in-house tools built within the platform. Diversify lead sources with our automated social media posting, integrated Google and Facebook advertising, custom text codes and more.
    Learn More
  • 1
    dtreeviz

    dtreeviz

    Python library for decision tree visualization & model interpretation

    A python library for decision tree visualization and model interpretation. Decision trees are the fundamental building block of gradient boosting machines and Random Forests(tm), probably the two most popular machine learning models for structured data. Visualizing decision trees is a tremendous aid when learning how these models work and when interpreting models. The visualizations are inspired by an educational animation by R2D3; A visual introduction to machine learning. Please see How to...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    MMOCR

    MMOCR

    OpenMMLab Text Detection, Recognition and Understanding Toolbox

    MMOCR is an open-source toolbox based on PyTorch and mmdetection for text detection, text recognition, and the corresponding downstream tasks including key information extraction. It is part of the OpenMMLab project. The toolbox supports not only text detection and text recognition, but also their downstream tasks such as key information extraction. The toolbox supports a wide variety of state-of-the-art models for text detection, text recognition and key information extraction. The modular...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 3
    AI Explainability 360

    AI Explainability 360

    Interpretability and explainability of data and machine learning model

    The AI Explainability 360 toolkit is an open-source library that supports the interpretability and explainability of datasets and machine learning models. The AI Explainability 360 Python package includes a comprehensive set of algorithms that cover different dimensions of explanations along with proxy explainability metrics. The AI Explainability 360 interactive experience provides a gentle introduction to the concepts and capabilities by walking through an example use case for different...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    CausalNex

    CausalNex

    A Python library that helps data scientists to infer causation

    CausalNex is a Python library that uses Bayesian Networks to combine machine learning and domain expertise for causal reasoning. You can use CausalNex to uncover structural relationships in your data, learn complex distributions, and observe the effect of potential interventions.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Lightspeed golf course management software Icon
    Lightspeed golf course management software

    Lightspeed Golf is all-in-one golf course management software to help courses simplify operations, drive revenue and deliver amazing golf experiences.

    From tee sheet management, point of sale and payment processing to marketing, automation, reporting and more—Lightspeed is built for the pro shop, restaurant, back office, beverage cart and beyond.
    Learn More
  • 5
    Lightning Flash

    Lightning Flash

    Flash enables you to easily configure and run complex AI recipes

    Your PyTorch AI Factory, Flash enables you to easily configure and run complex AI recipes for over 15 tasks across 7 data domains. In a nutshell, Flash is the production-grade research framework you always dreamed of but didn't have time to build. All data loading in Flash is performed via a from_* classmethod on a DataModule. Which DataModule to use and which from_* methods are available depends on the task you want to perform. For example, for image segmentation where your data is stored...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 6
    pyts

    pyts

    A Python package for time series classification

    pyts is a Python package dedicated to time series classification. It aims to make time series classification easily accessible by providing preprocessing and utility tools, and implementations of several time series classification algorithms. The package comes up with many unit tests and continuous integration ensures new code integration and backward compatibility. The package is distributed under the 3-clause BSD license.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    Lightning Bolts

    Lightning Bolts

    Toolbox of models, callbacks, and datasets for AI/ML researchers

    Bolts package provides a variety of components to extend PyTorch Lightning, such as callbacks & datasets, for applied research and production. Torch ORT converts your model into an optimized ONNX graph, speeding up training & inference when using NVIDIA or AMD GPUs. We can introduce sparsity during fine-tuning with SparseML, which ultimately allows us to leverage the DeepSparse engine to see performance improvements at inference time.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    Transformer Reinforcement Learning X

    Transformer Reinforcement Learning X

    A repo for distributed training of language models with Reinforcement

    trlX is a distributed training framework designed from the ground up to focus on fine-tuning large language models with reinforcement learning using either a provided reward function or a reward-labeled dataset. Training support for Hugging Face models is provided by Accelerate-backed trainers, allowing users to fine-tune causal and T5-based language models of up to 20B parameters, such as facebook/opt-6.7b, EleutherAI/gpt-neox-20b, and google/flan-t5-xxl. For models beyond 20B parameters,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    Horovod

    Horovod

    Distributed training framework for TensorFlow, Keras, PyTorch, etc.

    Horovod was originally developed by Uber to make distributed deep learning fast and easy to use, bringing model training time down from days and weeks to hours and minutes. With Horovod, an existing training script can be scaled up to run on hundreds of GPUs in just a few lines of Python code. Horovod can be installed on-premise or run out-of-the-box in cloud platforms, including AWS, Azure, and Databricks. Horovod can additionally run on top of Apache Spark, making it possible to unify data...
    Downloads: 0 This Week
    Last Update:
    See Project
  • eProcurement Software Icon
    eProcurement Software

    Enterprises and companies seeking a solution to manage all their procurement operations and processes

    eBuyerAssist by Eyvo is a cloud-based procurement solution designed for businesses of all sizes and industries. Fully modular and scalable, it streamlines the entire procurement lifecycle—from requisition to fulfillment. The platform includes powerful tools for strategic sourcing, supplier management, warehouse operations, and contract oversight. Additional modules cover purchase orders, approval workflows, inventory and asset management, customer orders, budget control, cost accounting, invoice matching, vendor credit checks, and risk analysis. eBuyerAssist centralizes all procurement functions into a single, easy-to-use system—improving visibility, control, and efficiency across your organization. Whether you're aiming to reduce costs, enhance compliance, or align procurement with broader business goals, eBuyerAssist helps you get there faster, smarter, and with measurable results.
    Learn More
  • 10
    Spektral

    Spektral

    Graph Neural Networks with Keras and Tensorflow 2

    ...Spektral also includes lots of utilities for representing, manipulating, and transforming graphs in your graph deep learning projects. Spektral is compatible with Python 3.6 and above, and is tested on the latest versions of Ubuntu, MacOS, and Windows. Other Linux distros should work as well. The 1.0 release of Spektral is an important milestone for the library and brings many new features and improvements.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    TF2DeepFloorplan

    TF2DeepFloorplan

    TF2 Deep FloorPlan Recognition using a Multi-task Network

    TF2 Deep FloorPlan Recognition using a Multi-task Network with Room-boundary-Guided Attention. Enable tensorboard, quantization, flask, tflite, docker, github actions and google colab. This repo contains a basic procedure to train and deploy the DNN model suggested by the paper 'Deep Floor Plan Recognition using a Multi-task Network with Room-boundary-Guided Attention'. It rewrites the original codes from zlzeng/DeepFloorplan into newer versions of Tensorflow and Python.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 12
    TensorFlow Ranking

    TensorFlow Ranking

    Learning to rank in TensorFlow

    TensorFlow Ranking is a library for Learning-to-Rank (LTR) techniques on the TensorFlow platform. Commonly used loss functions including pointwise, pairwise, and listwise losses. Commonly used ranking metrics like Mean Reciprocal Rank (MRR) and Normalized Discounted Cumulative Gain (NDCG). Multi-item (also known as groupwise) scoring functions. LambdaLoss implementation for direct ranking metric optimization. Unbiased Learning-to-Rank from biased feedback data. We envision that this library...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    TensorFlow Documentation

    TensorFlow Documentation

    TensorFlow documentation

    An end-to-end platform for machine learning. TensorFlow makes it easy to create ML models that can run in any environment. Learn how to use the intuitive APIs through interactive code samples.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 14

    Lumi-HSP

    This is an AI language model that can predict Heart failure or stroke

    Using thsi AI model, you can predict the chances of heart stroke and heart failure. HIGLIGHTS : 1. Accuracy of this model is 95% 2. This model uses the powerful Machine Learning algorithm "GradientBoosting" for predicting the outcomes. 3. An easy to use model and accessible to everyone.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    sense2vec

    sense2vec

    Contextually-keyed word vectors

    sense2vec (Trask et. al, 2015) is a nice twist on word2vec that lets you learn more interesting and detailed word vectors. This library is a simple Python implementation for loading, querying and training sense2vec models. For more details, check out our blog post. To explore the semantic similarities across all Reddit comments of 2015 and 2019, see the interactive demo.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 16
    OGB

    OGB

    Benchmark datasets, data loaders, and evaluators for graph machine

    The Open Graph Benchmark (OGB) is a collection of realistic, large-scale, and diverse benchmark datasets for machine learning on graphs. OGB datasets are automatically downloaded, processed, and split using the OGB Data Loader. The model performance can be evaluated using the OGB Evaluator in a unified manner. OGB is a community-driven initiative in active development. We expect the benchmark datasets to evolve. OGB provides a diverse set of challenging and realistic benchmark datasets that...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    DIG

    DIG

    A library for graph deep learning research

    The key difference with current graph deep learning libraries, such as PyTorch Geometric (PyG) and Deep Graph Library (DGL), is that, while PyG and DGL support basic graph deep learning operations, DIG provides a unified testbed for higher level, research-oriented graph deep learning tasks, such as graph generation, self-supervised learning, explainability, 3D graphs, and graph out-of-distribution. If you are working or plan to work on research in graph deep learning, DIG enables you to...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 18
    smclarify

    smclarify

    Fairness aware machine learning. Bias detection and mitigation

    Fairness Aware Machine Learning. Bias detection and mitigation for datasets and models. A facet is column or feature that will be used to measure bias against. A facet can have value(s) that designates that sample as "sensitive". Bias detection and mitigation for datasets and models. The label is a column or feature which is the target for training a machine learning model. The label can have value(s) that designates that sample as having a "positive" outcome. A bias measure is a function...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    LightFM

    LightFM

    A Python implementation of LightFM, a hybrid recommendation algorithm

    LightFM is a Python implementation of a number of popular recommendation algorithms for both implicit and explicit feedback, including efficient implementation of BPR and WARP ranking losses. It's easy to use, fast (via multithreaded model estimation), and produces high-quality results. It also makes it possible to incorporate both item and user metadata into the traditional matrix factorization algorithms. It represents each user and item as the sum of the latent representations of their...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    MLPACK is a C++ machine learning library with emphasis on scalability, speed, and ease-of-use. Its aim is to make machine learning possible for novice users by means of a simple, consistent API, while simultaneously exploiting C++ language features to provide maximum performance and flexibility for expert users. * More info + downloads: https://mlpack.org * Git repo: https://github.com/mlpack/mlpack
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    T81 558

    T81 558

    Applications of Deep Neural Networks

    Deep learning is a group of exciting new technologies for neural networks. Through a combination of advanced training techniques and neural network architectural components, it is now possible to create neural networks that can handle tabular data, images, text, and audio as both input and output. Deep learning allows a neural network to learn hierarchies of information in a way that is like the function of the human brain. This course will introduce the student to classic neural network...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    Keras Attention Mechanism

    Keras Attention Mechanism

    Attention mechanism Implementation for Keras

    Many-to-one attention mechanism for Keras. We demonstrate that using attention yields a higher accuracy on the IMDB dataset. We consider two LSTM networks: one with this attention layer and the other one with a fully connected layer. Both have the same number of parameters for a fair comparison (250K). The attention is expected to be the highest after the delimiters. An overview of the training is shown below, where the top represents the attention map and the bottom the ground truth. As the...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    FFCV

    FFCV

    Fast Forward Computer Vision (and other ML workloads!)

    ffcv is a drop-in data loading system that dramatically increases data throughput in model training. From gridding to benchmarking to fast research iteration, there are many reasons to want faster model training. Below we present premade codebases for training on ImageNet and CIFAR, including both (a) extensible codebases and (b) numerous premade training configurations.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    Sockeye

    Sockeye

    Sequence-to-sequence framework, focused on Neural Machine Translation

    Sockeye is an open-source sequence-to-sequence framework for Neural Machine Translation built on PyTorch. It implements distributed training and optimized inference for state-of-the-art models, powering Amazon Translate and other MT applications. For a quickstart guide to training a standard NMT model on any size of data, see the WMT 2014 English-German tutorial. If you are interested in collaborating or have any questions, please submit a pull request or issue. You can also send questions...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    BERTScore

    BERTScore

    BERT score for text generation

    Automatic Evaluation Metric described in the paper BERTScore: Evaluating Text Generation with BERT (ICLR 2020). We now support about 130 models (see this spreadsheet for their correlations with human evaluation). Currently, the best model is Microsoft/debate-large-online, please consider using it instead of the default roberta-large in order to have the best correlation with human evaluation.
    Downloads: 0 This Week
    Last Update:
    See Project