Showing 302 open source projects for "using"

View related business solutions
  • Find Hidden Risks in Windows Task Scheduler Icon
    Find Hidden Risks in Windows Task Scheduler

    Free diagnostic script reveals configuration issues, error patterns, and security risks. Instant HTML report.

    Windows Task Scheduler might be hiding critical failures. Download the free JAMS diagnostic tool to uncover problems before they impact production—get a color-coded risk report with clear remediation steps in minutes.
    Download Free Tool
  • AI-generated apps that pass security review Icon
    AI-generated apps that pass security review

    Stop waiting on engineering. Build production-ready internal tools with AI—on your company data, in your cloud.

    Retool lets you generate dashboards, admin panels, and workflows directly on your data. Type something like “Build me a revenue dashboard on my Stripe data” and get a working app with security, permissions, and compliance built in from day one. Whether on our cloud or self-hosted, create the internal software your team needs without compromising enterprise standards or control.
    Try Retool free
  • 1
    Easy-TensorFlow

    Easy-TensorFlow

    Simple and comprehensive tutorials in TensorFlow

    ...In addition to the aforementioned points, the large community of TensorFlow enriches the developers with the answer to almost all the questions one may encounter. Furthermore, since most of the developers are using TensorFlow for code development, having hands-on on TensorFlow is a necessity these days. Tensorboard is a powerful visualization suite that is developed to track both the network topology and performance, making debugging even simpler.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    NN-SVG

    NN-SVG

    Publication-ready NN-architecture schematics

    ...The tool provides the ability to generate figures of three kinds: classic Fully-Connected Neural Network (FCNN) figures, Convolutional Neural Network (CNN) figures of the sort introduced in the LeNet paper, and Deep Neural Network figures following the style introduced in the AlexNet paper. The former two are accomplished using the D3 javascript library and the latter with the javascript library Three.js. NN-SVG provides the ability to style the figure to the user's liking via many size, color, and layout parameters.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 3
    Oryx

    Oryx

    Lambda architecture on Apache Spark, Apache Kafka for real-time

    ...It is a framework for building applications but also includes packaged, end-to-end applications for collaborative filtering, classification, regression and clustering. The application is written in Java, using Apache Spark, Hadoop, Tomcat, Kafka, Zookeeper and more. Configuration uses a single Typesafe Config config file, wherein applications configure an entire deployment of the system. This includes implementations of key interface classes which implement the batch, speed, and serving logic. Applications package and deploy their implementations with each instance of the layer binaries. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    Pragmatic AI

    Pragmatic AI

    [Book-2019] Pragmatic AI: An Introduction to Cloud-based ML

    ...Writing for business professionals, decision-makers, and students who aren’t professional data scientists, Noah Gift demystifies all the tools and technologies you need to get results. He illuminates powerful off-the-shelf cloud-based solutions from Google, Amazon, and Microsoft, as well as accessible techniques using Python and R. Throughout, you’ll find simple, clear, and effective working solutions that show how to apply machine learning, AI and cloud computing together in virtually any organization, creating solutions that deliver results, and offer virtually unlimited scalability.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Atera all-in-one platform IT management software with AI agents Icon
    Atera all-in-one platform IT management software with AI agents

    Ideal for internal IT departments or managed service providers (MSPs)

    Atera’s AI agents don’t just assist, they act. From detection to resolution, they handle incidents and requests instantly, taking your IT management from automated to autonomous.
    Learn More
  • 5

    CRP - Chemical Reaction Prediction

    Predicting Organic Reactions using Neural Networks.

    The intend is to solve the forward-reaction prediction problem, where the reactants are known and the interest is in generating the reaction products using Deep learning. This Graphical User Interface takes simplified molecular-input line-entry system (SMILES) as an input and generates the product SMILE & molecule. Beam search is used in Version 2, to generate top 5 predictions. Maximum input length for the model is 15 (excluding spaces).
    Downloads: 2 This Week
    Last Update:
    See Project
  • 6

    AerinSistemas-Noname

    Elasticsearch to Pandas dataframe or CSV

    API and command line utility, written in Python, for querying Elasticsearch exporting result as documents into a CSV file. The search can be done using logical operators or ranges, in combination or alone. The output can be limited to the desired attributes. Also ToT can insert the querying to a Pandas Dataframe or/and save its in a HDF5 container (under development).
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    DIGITS

    DIGITS

    Deep Learning GPU training system

    The NVIDIA Deep Learning GPU Training System (DIGITS) puts the power of deep learning into the hands of engineers and data scientists. DIGITS can be used to rapidly train the highly accurate deep neural network (DNNs) for image classification, segmentation and object detection tasks. DIGITS simplifies common deep learning tasks such as managing data, designing and training neural networks on multi-GPU systems, monitoring performance in real-time with advanced visualizations, and selecting...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    DeepLearn

    DeepLearn

    Implementation of research papers on Deep Learning+ NLP+ CV in Python

    Welcome to DeepLearn. This repository contains an implementation of the following research papers on NLP, CV, ML, and deep learning. The required dependencies are mentioned in requirement.txt. I will also use dl-text modules for preparing the datasets. If you haven't use it, please do have a quick look at it. CV, transfer learning, representation learning.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    mAP

    mAP

    Evaluates the performance of your neural net for object recognition

    In practice, a higher mAP value indicates a better performance of your neural net, given your ground truth and set of classes. The performance of your neural net will be judged using the mAP criteria defined in the PASCAL VOC 2012 competition. We simply adapted the official Matlab code into Python (in our tests they both give the same results). First, your neural net detection-results are sorted by decreasing confidence and are assigned to ground-truth objects. We have "a match" when they share the same label and an IoU >= 0.5 (Intersection over Union greater than 50%). ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • G-P - Global EOR Solution Icon
    G-P - Global EOR Solution

    Companies searching for an Employer of Record solution to mitigate risk and manage compliance, taxes, benefits, and payroll anywhere in the world

    With G-P's industry-leading Employer of Record (EOR) and Contractor solutions, you can hire, onboard and manage teams in 180+ countries — quickly and compliantly — without setting up entities.
    Learn More
  • 10

    Face Recognition

    World's simplest facial recognition api for Python & the command line

    Face Recognition is the world's simplest face recognition library. It allows you to recognize and manipulate faces from Python or from the command line using dlib's (a C++ toolkit containing machine learning algorithms and tools) state-of-the-art face recognition built with deep learning. Face Recognition is highly accurate and is able to do a number of things. It can find faces in pictures, manipulate facial features in pictures, identify faces in pictures, and do face recognition on a folder of images from the command line. ...
    Downloads: 5 This Week
    Last Update:
    See Project
  • 11
    Easy Machine Learning

    Easy Machine Learning

    Easy Machine Learning is a general-purpose dataflow-based system

    Machine learning algorithms have become the key components in many big data applications. However, the full potential of machine learning is still far from being realized because using machine learning algorithms is hard, especially on distributed platforms such as Hadoop and Spark. The key barriers come from not only the implementation of the algorithms themselves but also the processing for applying them to real applications which often involve multiple steps and different algorithms. Our platform Easy Machine Learning presents a general-purpose dataflow-based system for easing the process of applying machine learning algorithms to real-world tasks. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 12
    The Deep Review

    The Deep Review

    A collaboratively written review paper on deep learning, genomics, etc

    ...New contributors are welcome and will be listed as version 2.0 authors. Manubot is a system for writing scholarly manuscripts via GitHub. Manubot automates citations and references, versions manuscripts using git, and enables collaborative writing via GitHub.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    Tensor Comprehensions

    Tensor Comprehensions

    A domain specific language to express machine learning workloads

    Tensor Comprehensions (TC) is a fully functional C++ library that automatically synthesizes high-performance machine learning kernels using Halide, ISL, and NVRTC or LLVM. TC additionally provides basic integration with Caffe2 and PyTorch. We provide more details in our paper on arXiv. This library is designed to be highly portable, machine-learning-framework agnostic and only requires a simple tensor library with memory allocation, offloading, and synchronization capabilities.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    Intel neon

    Intel neon

    Intel® Nervana™ reference deep learning framework

    neon is Intel's reference deep learning framework committed to best performance on all hardware. Designed for ease of use and extensibility. See the new features in our latest release. We want to highlight that neon v2.0.0+ has been optimized for much better performance on CPUs by enabling Intel Math Kernel Library (MKL). The DNN (Deep Neural Networks) component of MKL that is used by neon is provided free of charge and downloaded automatically as part of the neon installation. The gpu...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 15
    UnrealCV

    UnrealCV

    Connecting Computer Vision to Unreal Engine

    UnrealCV is a project to help computer vision researchers build virtual worlds using Unreal Engine (UE). It extends UE with a plugin. UnrealCV can be used in two ways. The first one is using a compiled game binary with UnrealCV embedded. This is as simple as running a game, no knowledge of Unreal Engine is required. The second is installing the UnrealCV plugin into Unreal Engine and using the editor to build a new virtual world.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    NNVM

    NNVM

    Open deep learning compiler stack for cpu, gpu

    The vision of the Apache NNVM Project is to host a diverse community of experts and practitioners in machine learning, compilers, and systems architecture to build an accessible, extensible, and automated open-source framework that optimizes current and emerging machine learning models for any hardware platform. Compilation of deep learning models into minimum deployable modules. Infrastructure to automatically generates and optimize models on more backend with better performance....
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    Lip Reading

    Lip Reading

    Cross Audio-Visual Recognition using 3D Architectures

    ...We proposed the utilization of a coupled 3D Convolutional Neural Network (CNN) architecture that can map both modalities into a representation space to evaluate the correspondence of audio-visual streams using the learned multimodal features.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 18

    OWL Machine Learning

    Machine learning algorithm using OWL

    Feature construction and selection are two key factors in the field of Machine Learning (ML). Usually, these are very time-consuming and complex tasks because the features have to be manually crafted. The features are aggregated, combined or split to create features from raw data. This project makes use of ontologies to automatically generate features for the ML algorithms. The features are generated by combining the concepts and relationships that are already in the knowledge base,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    Machine Learning for OpenCV

    Machine Learning for OpenCV

    M. Beyeler (2017). Machine Learning for OpenCV

    M. Beyeler (2017). Machine Learning for OpenCV: Intelligent image processing with Python. Packt Publishing Ltd., ISBN 978-178398028-4.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    Caffe2

    Caffe2

    Caffe2 is a lightweight, modular, and scalable deep learning framework

    ...Caffe2 is a deep learning framework that provides an easy and straightforward way for you to experiment with deep learning and leverage community contributions of new models and algorithms. You can bring your creations to scale using the power of GPUs in the cloud or to the masses on mobile with Caffe2’s cross-platform libraries. Modularity and being designed for both scale and mobile deployments are the high-level answers to the first question. In many ways Caffe2 is an un-framework because it is so flexible and modular. The original Caffe framework was useful for large-scale product use cases, especially with its unparalleled performance and well tested C++ codebase. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    Keras.js

    Keras.js

    Run Keras models in the browser, with GPU support using WebGL

    Run Keras models in the browser, with GPU support provided by WebGL 2. Models can be run in Node.js as well, but only in CPU mode. Because Keras abstracts away a number of frameworks as backends, the models can be trained in any backend, including TensorFlow, CNTK, etc. Check out the demos/ directory for real examples running Keras.js in VueJS. Library version compatibility, Keras 2.1.2.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22

    Training Image Operators from Samples

    Tools to train Image Operators automatically from a set of samples.

    TRIOS - Training Image Operators from Samples is a set of tools to bring Image Processing closer to scientists in general. It is capable of estimating an operator between two images using only pairs of samples that contain an input image and the desired output. The operator is saved to a file and can be applied to any image.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    libfastknn

    libfastknn

    Fast C++ KNN classifier

    KNN Classifier library for C++, at background using armadillo. In k-NN classification, the output is a class membership. An object is classified by a majority vote of its neighbors, with the object being assigned to the class most common among its k nearest neighbors (k is a positive integer, typically small). If k = 1, then the object is simply assigned to the class of that single nearest neighbor.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    Swift AI

    Swift AI

    The Swift machine learning library

    ...Swift AI includes a collection of common tools used for artificial intelligence and scientific applications. A flexible, fully-connected neural network with support for deep learning. Optimized specifically for Apple hardware, using advanced parallel processing techniques. We've created some example projects to demonstrate the usage of Swift AI. Each resides in their own repository and can be built with little or no configuration. Each module now contains its own documentation. We recommend that you read the docs carefully for detailed instructions on using the various components of Swift AI. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 25
    EEG Seizure Prediction

    EEG Seizure Prediction

    Seizure prediction from EEG data using machine learning

    The Kaggle-EEG project is a machine learning solution developed for seizure prediction from EEG data, achieving 3rd place in the Kaggle/University of Melbourne Seizure Prediction competition. The repository processes EEG data to predict seizures by training machine learning models, specifically using SVM (Support Vector Machine) and RUS Boosted Tree ensemble models. The framework processes EEG data into features, trains models, and outputs predictions, handling temporal data to ensure accuracy.
    Downloads: 0 This Week
    Last Update:
    See Project