Showing 14 open source projects for "network data speed"

View related business solutions
  • Atera all-in-one platform IT management software with AI agents Icon
    Atera all-in-one platform IT management software with AI agents

    Ideal for internal IT departments or managed service providers (MSPs)

    Atera’s AI agents don’t just assist, they act. From detection to resolution, they handle incidents and requests instantly, taking your IT management from automated to autonomous.
    Learn More
  • Free and Open Source HR Software Icon
    Free and Open Source HR Software

    OrangeHRM provides a world-class HRIS experience and offers everything you and your team need to be that HR hero you know that you are.

    Give your HR team the tools they need to streamline administrative tasks, support employees, and make informed decisions with the OrangeHRM free and open source HR software.
    Learn More
  • 1

    LightGBM

    Gradient boosting framework based on decision tree algorithms

    LightGBM or Light Gradient Boosting Machine is a high-performance, open source gradient boosting framework based on decision tree algorithms. Compared to other boosting frameworks, LightGBM offers several advantages in terms of speed, efficiency and accuracy. Parallel experiments have shown that LightGBM can attain linear speed-up through multiple machines for training in specific settings, all while consuming less memory. LightGBM supports parallel and GPU learning, and can handle large-scale data. It’s become widely-used for ranking, classification and many other machine learning tasks.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 2
    ROOT

    ROOT

    Analyzing, storing and visualizing big data, scientifically

    ...ROOT comes with histogramming capabilities in an arbitrary number of dimensions, curve fitting, statistical modeling, and minimization, to allow the easy setup of a data analysis system that can query and process the data interactively or in batch mode, as well as a general parallel processing framework, RDataFrame, that can considerably speed up an analysis.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 3
    ONNX

    ONNX

    Open standard for machine learning interoperability

    ...ONNX defines a common set of operators - the building blocks of machine learning and deep learning models - and a common file format to enable AI developers to use models with a variety of frameworks, tools, runtimes, and compilers. Open Neural Network Exchange (ONNX) is an open ecosystem that empowers AI developers to choose the right tools as their project evolves. ONNX provides an open source format for AI models, both deep learning and traditional ML. It defines an extensible computation graph model, as well as definitions of built-in operators and standard data types. Currently we focus on the capabilities needed for inferencing (scoring). ...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 4
    TensorRT

    TensorRT

    C++ library for high performance inference on NVIDIA GPUs

    ...It includes a deep learning inference optimizer and runtime that delivers low latency and high throughput for deep learning inference applications. TensorRT-based applications perform up to 40X faster than CPU-only platforms during inference. With TensorRT, you can optimize neural network models trained in all major frameworks, calibrate for lower precision with high accuracy, and deploy to hyperscale data centers, embedded, or automotive product platforms. TensorRT is built on CUDA®, NVIDIA’s parallel programming model, and enables you to optimize inference leveraging libraries, development tools, and technologies in CUDA-X™ for artificial intelligence, autonomous machines, high-performance computing, and graphics. ...
    Downloads: 21 This Week
    Last Update:
    See Project
  • The Original Buy Center Software. Icon
    The Original Buy Center Software.

    Never Go To The Auction Again.

    VAN sources private-party vehicles from over 20 platforms and provides all necessary tools to communicate with sellers and manage opportunities. Franchise and Independent dealers can boost their buy center strategies with our advanced tools and an experienced Acquisition Coaching™ team dedicated to your success.
    Learn More
  • 5
    SentencePiece

    SentencePiece

    Unsupervised text tokenizer for Neural Network-based text generation

    ...Purely data driven, sentencePiece trains tokenization and detokenization models from sentences. Pre-tokenization (Moses tokenizer/MeCab/KyTea) is not always required. SentencePiece treats the sentences just as sequences of Unicode characters. There is no language-dependent logic.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 6
    DeepDetect

    DeepDetect

    Deep Learning API and Server in C++14 support for Caffe, PyTorch

    ...While the Open Source Deep Learning Server is the core element, with REST API, and multi-platform support that allows training & inference everywhere, the Deep Learning Platform allows higher level management for training neural network models and using them as if they were simple code snippets. Ready for applications of image tagging, object detection, segmentation, OCR, Audio, Video, Text classification, CSV for tabular data and time series. Neural network templates for the most effective architectures for GPU, CPU, and Embedded devices. Training in a few hours and with small data thanks to 25+ pre-trained models. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    Pedalboard

    Pedalboard

    A Python library for audio

    pedalboard is a Python library for working with audio: reading, writing, rendering, adding effects, and more. It supports the most popular audio file formats and a number of common audio effects out of the box and also allows the use of VST3® and Audio Unit formats for loading third-party software instruments and effects. pedalboard was built by Spotify’s Audio Intelligence Lab to enable using studio-quality audio effects from within Python and TensorFlow. Internally at Spotify, pedalboard...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 8
    Armadillo

    Armadillo

    fast C++ library for linear algebra & scientific computing

    * Fast C++ library for linear algebra (matrix maths) and scientific computing * Easy to use functions and syntax, deliberately similar to Matlab / Octave * Uses template meta-programming techniques to increase efficiency * Provides user-friendly wrappers for OpenBLAS, Intel MKL, LAPACK, ATLAS, ARPACK, SuperLU and FFTW libraries * Useful for machine learning, pattern recognition, signal processing, bioinformatics, statistics, finance, etc. * Downloads:...
    Leader badge
    Downloads: 2,384 This Week
    Last Update:
    See Project
  • 9
    YOLO ROS

    YOLO ROS

    YOLO ROS: Real-Time Object Detection for ROS

    ...You only look once (YOLO) is a state-of-the-art, real-time object detection system. In the following ROS package, you are able to use YOLO (V3) on GPU and CPU. The pre-trained model of the convolutional neural network is able to detect pre-trained classes including the data set from VOC and COCO, or you can also create a network with your own detection objects. The YOLO packages have been tested under ROS Noetic and Ubuntu 20.04. We also provide branches that work under ROS Melodic, ROS Foxy and ROS2. Darknet on the CPU is fast (approximately 1.5 seconds on an Intel Core i7-6700HQ CPU @ 2.60GHz × 8) but it's like 500 times faster on GPU! ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Nonprofit Budgeting Software Icon
    Nonprofit Budgeting Software

    Martus Solutions provides seamless budgeting, reporting, and forecasting tools that integrate with accounting systems for real-time financial insights

    Martus' collaborative and easy-to-use budgeting and reporting platform will save you hundreds of hours each year. It's designed to make the entire budgeting process easier and create unlimited financial transparency.
    Learn More
  • 10
    Euler

    Euler

    A distributed graph deep learning framework.

    Data in the fields of text, speech, and images is easier to process into a grid-like type of Euclidean space, which is suitable for processing by existing deep learning models. Graph is a data type in non-Euclidean space and cannot be directly applied to existing methods, requiring a specially designed graph neural network system. Graph-based learning methods such as graph neural networks combine end-to-end learning with inductive reasoning, and are expected to solve a series of problems such as relational reasoning and interpretability that deep learning cannot handle.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 11
    SINGA

    SINGA

    A distributed deep learning platform

    Apache SINGA is an Apache Top Level Project, focusing on distributed training of deep learning and machine learning models. Various example deep learning models are provided in SINGA repo on Github and on Google Colab. SINGA supports data parallel training across multiple GPUs (on a single node or across different nodes). SINGA supports various popular optimizers including stochastic gradient descent with momentum, Adam, RMSProp, and AdaGrad, etc. SINGA records the computation graph and...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12

    Automatic cell lineage reconstruction

    Automatic segmentation and tracking for 3D time-lapse microscopy

    From Amat et al., Nature Methods, 2014*: "The comprehensive reconstruction of cell lineages in complex multicellular organisms is a central goal of developmental biology. We present an open-source computational framework for segmentation and tracking of cell nuclei with high accuracy and speed. We demonstrate its (1) generality, by reconstructing cell lineages in four-dimensional, terabyte-sized image data of fruit-fly, zebrafish and mouse embryos, acquired with three different types of fluorescence microscopes, (2) scalability, by analyzing advanced stages of development with up to 20,000 cells per time point, at 26,000 cells min-1 on a single computer workstation, and (3) ease of use, by adjusting only two parameters across all data sets and providing visualization and editing tools for efficient data curation. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13

    CURRENNT

    CUDA-enabled machine learning library for recurrent neural networks

    CURRENNT is a machine learning library for Recurrent Neural Networks (RNNs) which uses NVIDIA graphics cards to accelerate the computations. The library implements uni- and bidirectional Long Short-Term Memory (LSTM) architectures and supports deep networks as well as very large data sets that do not fit into main memory.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    This project aims to develop a method to identify communities in a social network according to some point of view.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next