5 projects for "random" with 2 filters applied:

  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Context for your AI agents Icon
    Context for your AI agents

    Crawl websites, sync to vector databases, and power RAG applications. Pre-built integrations for LLM pipelines and AI assistants.

    Build data pipelines that feed your AI models and agents without managing infrastructure. Crawl any website, transform content, and push directly to your preferred vector store. Use 10,000+ tools for RAG applications, AI assistants, and real-time knowledge bases. Monitor site changes, trigger workflows on new data, and keep your AIs fed with fresh, structured information. Cloud-native, API-first, and free to start until you need to scale.
    Try for free
  • 1

    GA-EoC

    GeneticAlgorithm-based search for Heterogeneous Ensemble Combinations

    ...This is even worst in case of both the high dimensional and class-imbalanced datasets. To overcome the limitations of class-imbalanced data, we split the dataset using a random sub-sampling to balance them. Then, we apply the (alpha,beta)-k feature set method to select a better subset of features and combine their outputs to get a consolidated feature set for classifier training. To enhance classification performances, we propose an ensemble of classifiers that combine the classification outputs of base classifiers using the simplest and largely used majority voting approach. ...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 2

    KMeansAniX

    Animation of kmeans clustering using X Window System

    Open source animation of kmeans clustering in X Window System using the C++ libplotter library. Supports Linux, Mac, and BSD. Includes common initialization methods such as Forgy, Macqueen, random, and angular. Sample videos are available through the Files Tab above. The SVN repo is accessible thorugh the Code Tab above. Requires a C++ compiler, libplot-dev, and libncurses5-dev Mac alternative to libplot-dev: macports plotutils +x11
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3

    StabLe

    An algorithm for learning stable graphical models from data

    Stable Graphical Model Learning (StabLe) is an algorithm for learning the structure and parameters of stable graphical (SG) models from data. Stable random variables are motivated by the central limit theorem for densities with (potentially) unbounded variance and can be thought of as natural generalizations of the Gaussian distribution to skewed and heavy-tailed phenomenon. SG models are multi-variate stable distributions that represent Bayesian networks whose edges encode linear dependencies amongst random variables. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    CRFSharp

    CRFSharp

    CRFSharp is a .NET(C#) implementation of Conditional Random Field

    CRFSharp(aka CRF#) is a .NET(C#) implementation of Conditional Random Fields, an machine learning algorithm for learning from labeled sequences of examples. It is widely used in Natural Language Process (NLP) tasks, for example: word breaker, postagging, named entity recognized, query chunking and so on. CRF#'s mainly algorithm is the same as CRF++ written by Taku Kudo. It encodes model parameters by L-BFGS.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Desktop and Mobile Device Management Software Icon
    Desktop and Mobile Device Management Software

    It's a modern take on desktop management that can be scaled as per organizational needs.

    Desktop Central is a unified endpoint management (UEM) solution that helps in managing servers, laptops, desktops, smartphones, and tablets from a central location.
    Learn More
  • 5
    CrfAny is a C++ package for efficient and exact training and inference of Conditional Random Fields over any graphical structure, supporting all feature types (boolean, integer and real) and command line, C++/Python Lib interfaces.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next