The "/@node-rs_xxhash@1.4..hash.darwin-x64.node" file could not be found or is not available. Please select another file.
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Atera all-in-one platform IT management software with AI agents Icon
    Atera all-in-one platform IT management software with AI agents

    Ideal for internal IT departments or managed service providers (MSPs)

    Atera’s AI agents don’t just assist, they act. From detection to resolution, they handle incidents and requests instantly, taking your IT management from automated to autonomous.
    Learn More
  • 1
    Vosk Speech Recognition Toolkit

    Vosk Speech Recognition Toolkit

    Offline speech recognition API for Android, iOS, Raspberry Pi

    Vosk is an offline open source speech recognition toolkit. It enables speech recognition for 20+ languages and dialects - English, Indian English, German, French, Spanish, Portuguese, Chinese, Russian, Turkish, Vietnamese, Italian, Dutch, Catalan, Arabic, Greek, Farsi, Filipino, Ukrainian, Kazakh, Swedish, Japanese, Esperanto, Hindi, Czech, Polish. More to come.
    Downloads: 89 This Week
    Last Update:
    See Project
  • 2
    YOLOv5

    YOLOv5

    YOLOv5 is the world's most loved vision AI

    Introducing Ultralytics YOLOv8, the latest version of the acclaimed real-time object detection and image segmentation model. YOLOv8 is built on cutting-edge advancements in deep learning and computer vision, offering unparalleled performance in terms of speed and accuracy. Its streamlined design makes it suitable for various applications and easily adaptable to different hardware platforms, from edge devices to cloud APIs. Explore the YOLOv8 Docs, a comprehensive resource designed to help...
    Downloads: 56 This Week
    Last Update:
    See Project
  • 3
    OpenCV

    OpenCV

    Open Source Computer Vision Library

    OpenCV (Open Source Computer Vision Library) is a comprehensive open-source library for computer vision, machine learning, and image processing. It enables developers to build real-time vision applications ranging from facial recognition to object tracking. OpenCV supports a wide range of programming languages including C++, Python, and Java, and is optimized for both CPU and GPU operations.
    Downloads: 19 This Week
    Last Update:
    See Project
  • 4
    MNN

    MNN

    MNN is a blazing fast, lightweight deep learning framework

    MNN is a highly efficient and lightweight deep learning framework. It supports inference and training of deep learning models, and has industry leading performance for inference and training on-device. At present, MNN has been integrated in more than 20 apps of Alibaba Inc, such as Taobao, Tmall, Youku, Dingtalk, Xianyu and etc., covering more than 70 usage scenarios such as live broadcast, short video capture, search recommendation, product searching by image, interactive marketing, equity...
    Downloads: 13 This Week
    Last Update:
    See Project
  • Automate contact and company data extraction Icon
    Automate contact and company data extraction

    Build lead generation pipelines that pull emails, phone numbers, and company details from directories, maps, social platforms. Full API access.

    Generate leads at scale without building or maintaining scrapers. Use 10,000+ ready-made tools that handle authentication, pagination, and anti-bot protection. Pull data from business directories, social profiles, and public sources, then export to your CRM or database via API. Schedule recurring extractions, enrich existing datasets, and integrate with your workflows.
    Explore Apify Store
  • 5
    MACE

    MACE

    Deep learning inference framework optimized for mobile platforms

    Mobile AI Compute Engine (or MACE for short) is a deep learning inference framework optimized for mobile heterogeneous computing on Android, iOS, Linux and Windows devices. Runtime is optimized with NEON, OpenCL and Hexagon, and Winograd algorithm is introduced to speed up convolution operations. The initialization is also optimized to be faster. Chip-dependent power options like big.LITTLE scheduling, Adreno GPU hints are included as advanced APIs. UI responsiveness guarantee is sometimes...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    TNN

    TNN

    Uniform deep learning inference framework for mobile

    TNN, a high-performance, lightweight neural network inference framework open sourced by Tencent Youtu Lab. It also has many outstanding advantages such as cross-platform, high performance, model compression, and code tailoring. The TNN framework further strengthens the support and performance optimization of mobile devices on the basis of the original Rapidnet and ncnn frameworks. At the same time, it refers to the high performance and good scalability characteristics of the industry's mainstream open source frameworks, and expands the support for X86 and NV GPUs. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    Bender

    Bender

    Easily craft fast Neural Networks on iOS

    Bender allows you to easily define and run neural networks on your iOS apps, it uses Apple’s MetalPerformanceShaders under the hood. Bender provides the ease of use of CoreML with the flexibility of a modern ML framework. Bender allows you to run trained models, you can use Tensorflow, Keras, Caffe, the choice is yours. Either freeze the graph or export the weights to files. You can import a frozen graph directly from supported platforms or re-define the network structure and load the...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8

    DGRLVQ

    Dynamic Generalized Relevance Learning Vector Quantization

    Some of the usual problems for Learning vector quantization (LVQ) based methods are that one cannot optimally guess about the number of prototypes required for initialization for multimodal data structures i.e.these algorithms are very sensitive to initialization of prototypes and one has to pre define the optimal number of prototypes before running the algorithm. If a prototype, for some reasons, is ‘outside’ the cluster which it should represent and if there are points of a different...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next