Showing 33 open source projects for "written in python"

View related business solutions
  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    Build gen AI apps with an all-in-one modern database: MongoDB Atlas

    MongoDB Atlas provides built-in vector search and a flexible document model so developers can build, scale, and run gen AI apps without stitching together multiple databases. From LLM integration to semantic search, Atlas simplifies your AI architecture—and it’s free to get started.
    Start Free
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • 1
    pycm

    pycm

    Multi-class confusion matrix library in Python

    PyCM is a multi-class confusion matrix library written in Python that supports both input data vectors and direct matrix, and a proper tool for post-classification model evaluation that supports most classes and overall statistics parameters. PyCM is the swiss-army knife of confusion matrices, targeted mainly at data scientists that need a broad array of metrics for predictive models and an accurate evaluation of large variety of classifiers.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    TorchRL

    TorchRL

    A modular, primitive-first, python-first PyTorch library

    TorchRL is an open-source Reinforcement Learning (RL) library for PyTorch. TorchRL provides PyTorch and python-first, low and high-level abstractions for RL that are intended to be efficient, modular, documented, and properly tested. The code is aimed at supporting research in RL. Most of it is written in Python in a highly modular way, such that researchers can easily swap components, transform them, or write new ones with little effort.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    spaCy models

    spaCy models

    Models for the spaCy Natural Language Processing (NLP) library

    spaCy is designed to help you do real work, to build real products, or gather real insights. The library respects your time, and tries to avoid wasting it. It's easy to install, and its API is simple and productive. spaCy excels at large-scale information extraction tasks. It's written from the ground up in carefully memory-managed Cython. If your application needs to process entire web dumps, spaCy is the library you want to be using. Since its release in 2015, spaCy has become an industry...
    Downloads: 7 This Week
    Last Update:
    See Project
  • 4
    GluonTS

    GluonTS

    Probabilistic time series modeling in Python

    GluonTS is a Python package for probabilistic time series modeling, focusing on deep learning based models. GluonTS requires Python 3.6 or newer, and the easiest way to install it is via pip. We train a DeepAR-model and make predictions using the simple "airpassengers" dataset. The dataset consists of a single time-series, containing monthly international passengers between the years 1949 and 1960, a total of 144 values (12 years * 12 months). We split the dataset into train and test parts,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Keep company data safe with Chrome Enterprise Icon
    Keep company data safe with Chrome Enterprise

    Protect your business with AI policies and data loss prevention in the browser

    Make AI work your way with Chrome Enterprise. Block unapproved sites and set custom data controls that align with your company's policies.
    Download Chrome
  • 5
    Lightly

    Lightly

    A python library for self-supervised learning on images

    A python library for self-supervised learning on images. We, at Lightly, are passionate engineers who want to make deep learning more efficient. That's why - together with our community - we want to popularize the use of self-supervised methods to understand and curate raw image data. Our solution can be applied before any data annotation step and the learned representations can be used to visualize and analyze datasets. This allows selecting the best core set of samples for model training...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    Label Studio

    Label Studio

    Label Studio is a multi-type data labeling and annotation tool

    The most flexible data annotation tool. Quickly installable. Build custom UIs or use pre-built labeling templates. Detect objects on image, bboxes, polygons, circular, and keypoints supported. Partition image into multiple segments. Use ML models to pre-label and optimize the process. Label Studio is an open-source data labeling tool. It lets you label data types like audio, text, images, videos, and time series with a simple and straightforward UI and export to various model formats. It can...
    Downloads: 16 This Week
    Last Update:
    See Project
  • 7
    TorchIO

    TorchIO

    Medical imaging toolkit for deep learning

    ...TorchIO is a Python package containing a set of tools to efficiently read, preprocess, sample, augment, and write 3D medical images in deep learning applications written in PyTorch, including intensity and spatial transforms for data augmentation and preprocessing. Transforms include typical computer vision operations such as random affine transformations and also domain-specific ones such as simulation of intensity artifacts due to MRI magnetic field inhomogeneity.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    Katib

    Katib

    Automated Machine Learning on Kubernetes

    Katib is a Kubernetes-native project for automated machine learning (AutoML). Katib supports Hyperparameter Tuning, Early Stopping and Neural Architecture Search. Katib is a project that is agnostic to machine learning (ML) frameworks. It can tune hyperparameters of applications written in any language of the users’ choice and natively supports many ML frameworks, such as TensorFlow, Apache MXNet, PyTorch, XGBoost, and others. Katib can perform training jobs using any Kubernetes Custom...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    eos

    eos

    A lightweight 3D Morphable Face Model library in modern C++

    eos is a lightweight 3D Morphable Face Model fitting library that provides basic functionality to use face models, as well as camera and shape fitting functionality. It's written in modern C++11/14. MorphableModel and PcaModel classes to represent 3DMMs, with basic operations like draw_sample(). Supports the Surrey Face Model (SFM), 4D Face Model (4DFM), Basel Face Model (BFM) 2009 and 2017, and the Liverpool-York Head Model (LYHM) out-of-the-box.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Rent Manager Software Icon
    Rent Manager Software

    Landlords, multi-family homes, manufactured home communities, single family homes, associations, commercial properties and mixed portfolios.

    Rent Manager is award-winning property management software built for residential, commercial, and short-term-stay portfolios of any size. The program’s fully customizable features include a double-entry accounting system, maintenance management/scheduling, marketing integration, mobile applications, more than 450 insightful reports, and an API that integrates with the best PropTech providers on the market.
    Learn More
  • 10
    IVY

    IVY

    The Unified Machine Learning Framework

    Take any code that you'd like to include. For example, an existing TensorFlow model, and some useful functions from both PyTorch and NumPy libraries. Choose any framework for writing your higher-level pipeline, including data loading, distributed training, analytics, logging, visualization etc. Choose any backend framework which should be used under the hood, for running this entire pipeline. Choose the most appropriate device or combination of devices for your needs. DeepMind releases an...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    OpenSpiel

    OpenSpiel

    Environments and algorithms for research in general reinforcement

    ...OpenSpiel also includes tools to analyze learning dynamics and other common evaluation metrics. Games are represented as procedural extensive-form games, with some natural extensions. The core API and games are implemented in C++ and exposed to Python. Algorithms and tools are written both in C++ and Python. To try OpenSpiel in Google Colaboratory, please refer to open_spiel/colabs subdirectory.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    Key-book

    Key-book

    Proofs, cases, concept supplements, and reference explanations

    The book "Introduction to Machine Learning Theory" (hereinafter referred to as "Introduction") written by Zhou Zhihua, Wang Wei, Gao Wei, and other teachers fills the regret of the lack of introductory works on machine learning theory in China. This book attempts to provide an introductory guide for readers interested in learning machine learning theory and researching machine learning theory in an easy-to-understand language. "Guide" mainly covers seven parts, corresponding to seven...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    Tribuo

    Tribuo

    Tribuo - A Java machine learning library

    Tribuo* is a machine learning library written in Java. It provides tools for classification, regression, clustering, model development, and more. It provides a unified interface to many popular third-party ML libraries like xgboost and liblinear. With interfaces to native code, Tribuo also makes it possible to deploy models trained by Python libraries (e.g. scikit-learn, and pytorch) in a Java program.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 14
    mlpack

    mlpack

    mlpack: a scalable C++ machine learning library

    ...It is meant to be a machine learning analog to LAPACK, and aims to implement a wide array of machine learning methods and functions as a "swiss army knife" for machine learning researchers. In addition to its powerful C++ interface, mlpack also provides command-line programs, Python bindings, Julia bindings, Go bindings and R bindings. Written in C++ and built on the Armadillo linear algebra library, the ensmallen numerical optimization library, and parts of Boost. Aims to provide fast, extensible implementations of cutting-edge machine learning algorithms. mlpack uses CMake as a build system and allows several flexible build configuration options. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 15
    TensorFlow.NET

    TensorFlow.NET

    .NET Standard bindings for Google's TensorFlow for developing models

    TensorFlow.NET (TF.NET) provides a .NET Standard binding for TensorFlow. It aims to implement the complete Tensorflow API in C# which allows .NET developers to develop, train and deploy Machine Learning models with the cross-platform .NET Standard framework. TensorFlow.NET has built-in Keras high-level interface and is released as an independent package TensorFlow.Keras. SciSharp STACK's mission is to bring popular data science technology into the .NET world and to provide .NET developers...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    CodeContests

    CodeContests

    Large dataset of coding contests designed for AI and ML model training

    CodeContests, developed by Google DeepMind, is a large-scale competitive programming dataset designed for training and evaluating machine learning models on code generation and problem solving. This dataset played a central role in the development of AlphaCode, DeepMind’s model for solving programming problems at a human-competitive level, as published in Science. CodeContests aggregates problems and human-written solutions from multiple programming competition platforms, including AtCoder,...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 17
    AlphaZero.jl

    AlphaZero.jl

    A generic, simple and fast implementation of Deepmind's AlphaZero

    ...We believe that this methodology can have exciting applications in many different research areas. Because AlphaZero is resource-hungry, successful open-source implementations (such as Leela Zero) are written in low-level languages (such as C++) and optimized for highly distributed computing environments. This makes them hardly accessible for students, researchers and hackers. Many simple Python implementations can be found on Github, but none of them is able to beat a reasonable baseline on games such as Othello or Connect Four. As an illustration, the benchmark in the README of the most popular of them only features a random baseline, along with a greedy baseline that does not appear to be significantly stronger.
    Downloads: 29 This Week
    Last Update:
    See Project
  • 18
    TensorNets

    TensorNets

    High level network definitions with pre-trained weights in TensorFlow

    High level network definitions with pre-trained weights in TensorFlow (tested with 2.1.0 >= TF >= 1.4.0). Applicability. Many people already have their own ML workflows and want to put a new model on their workflows. TensorNets can be easily plugged together because it is designed as simple functional interfaces without custom classes. Manageability. Models are written in tf.contrib.layers, which is lightweight like PyTorch and Keras, and allows for ease of accessibility to every weight and...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    Torchreid

    Torchreid

    Deep learning person re-identification in PyTorch

    Torchreid is a library for deep-learning person re-identification, written in PyTorch and developed for our ICCV’19 project, Omni-Scale Feature Learning for Person Re-Identification. In "deep-person-reid/scripts/", we provide a unified interface to train and test a model. See "scripts/main.py" and "scripts/default_config.py" for more details. The folder "configs/" contains some predefined configs which you can use as a starting point. The code will automatically (download and) load the...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 20
    captcha_break

    captcha_break

    Identification codes

    This project will use Keras to build a deep convolutional neural network to identify the captcha verification code. It is recommended to use a graphics card to run the project. The following visualization codes are jupyter notebookall done in . If you want to write a python script, you can run it normally with a little modification. Of course, you can also remove these visualization codes. captcha is a library written in python to generate verification codes. It supports image verification codes and voice verification codes. We use its function of generating image verification codes. First, we set our verification code format to numbers and capital letters, and generate a string of verification codes. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    RoboSat

    RoboSat

    Semantic segmentation on aerial and satellite imagery

    RoboSat is an end-to-end pipeline written in Python 3 for feature extraction from aerial and satellite imagery. Features can be anything visually distinguishable in the imagery for example: buildings, parking lots, roads, or cars.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    NeuralCoref

    NeuralCoref

    Fast Coreference Resolution in spaCy with Neural Networks

    ...NeuralCoref is production-ready, integrated in spaCy's NLP pipeline and extensible to new training datasets. For a brief introduction to coreference resolution and NeuralCoref, please refer to our blog post. NeuralCoref is written in Python/Cython and comes with a pre-trained statistical model for English only. NeuralCoref is accompanied by a visualization client NeuralCoref-Viz, a web interface powered by a REST server that can be tried online.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    Easy-TensorFlow

    Easy-TensorFlow

    Simple and comprehensive tutorials in TensorFlow

    The goal of this repository is to provide comprehensive tutorials for TensorFlow while maintaining the simplicity of the code. Each tutorial includes a detailed explanation (written in .ipynb) format, as well as the source code (in .py format). There is a necessity to address the motivations for this project. TensorFlow is one of the deep learning frameworks available with the largest community. This repository is dedicated to suggesting a simple path to learn TensorFlow. In addition to the...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    Tensorpack

    Tensorpack

    A Neural Net Training Interface on TensorFlow, with focus on speed

    ...Uses TensorFlow in the efficient way with no extra overhead. On common CNNs, it runs training 1.2~5x faster than the equivalent Keras code. Your training can probably gets faster if written with Tensorpack. Scalable data-parallel multi-GPU / distributed training strategy is off-the-shelf to use. Squeeze the best data loading performance of Python with tensorpack.dataflow. Symbolic programming (e.g. tf.data) does not offer the data processing flexibility needed in research. Tensorpack squeezes the most performance out of pure Python with various auto parallelization strategies. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25

    AerinSistemas-Noname

    Elasticsearch to Pandas dataframe or CSV

    API and command line utility, written in Python, for querying Elasticsearch exporting result as documents into a CSV file. The search can be done using logical operators or ranges, in combination or alone. The output can be limited to the desired attributes. Also ToT can insert the querying to a Pandas Dataframe or/and save its in a HDF5 container (under development).
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • Next