Showing 25 open source projects for "workflow"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Cloud-based help desk software with ServoDesk Icon
    Cloud-based help desk software with ServoDesk

    Full access to Enterprise features. No credit card required.

    What if You Could Automate 90% of Your Repetitive Tasks in Under 30 Days? At ServoDesk, we help businesses like yours automate operations with AI, allowing you to cut service times in half and increase productivity by 25% - without hiring more staff.
    Try ServoDesk for free
  • 1
    RAGFlow

    RAGFlow

    RAGFlow is an open-source RAG (Retrieval-Augmented Generation) engine

    RAGFlow is an open-source RAG (Retrieval-Augmented Generation) engine based on deep document understanding. It offers a streamlined RAG workflow for businesses of any scale, combining LLM (Large Language Models) to provide truthful question-answering capabilities, backed by well-founded citations from various complex formatted data.
    Downloads: 17 This Week
    Last Update:
    See Project
  • 2
    Flyte
    ...As your data and ML workflows expand and demand more computing power, your workflow orchestration platform must keep up. If it’s not designed to scale, your platform will require constant monitoring and maintenance. Flyte was built with scalability in mind, ready to handle changing workloads and resource needs.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 3
    ClearML

    ClearML

    Streamline your ML workflow

    ...The ClearML Python Package for integrating ClearML into your existing scripts by adding just two lines of code, and optionally extending your experiments and other workflows with ClearML powerful and versatile set of classes and methods. The ClearML Server storing experiment, model, and workflow data, and supports the Web UI experiment manager, and ML-Ops automation for reproducibility and tuning. It is available as a hosted service and open source for you to deploy your own ClearML Server. The ClearML Agent for ML-Ops orchestration, experiment and workflow reproducibility, and scalability.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    lightning AI

    lightning AI

    The most intuitive, flexible, way for researchers to build models

    Build in days not months with the most intuitive, flexible framework for building models and Lightning Apps (ie: ML workflow templates) which "glue" together your favorite ML lifecycle tools. Build models and build/publish end-to-end ML workflows that "glue" your favorite tools together. Models are “easy”, the “glue” work is hard. Lightning Apps are community-built templates that stitch together your favorite ML lifecycle tools into cohesive ML workflows that can run on your laptop or any cluster. ...
    Downloads: 6 This Week
    Last Update:
    See Project
  • Rezku Point of Sale Icon
    Rezku Point of Sale

    Designed for Real-World Restaurant Operations

    Rezku is an all-inclusive ordering platform and management solution for all types of restaurant and bar concepts. You can now get a fully custom branded downloadable smartphone ordering app for your restaurant exclusively from Rezku.
    Learn More
  • 5
    talos

    talos

    Hyperparameter Optimization for TensorFlow, Keras and PyTorch

    Talos radically changes the ordinary Keras, TensorFlow (tf.keras), and PyTorch workflow by fully automating hyperparameter tuning and model evaluation. Talos exposes Keras and TensorFlow (tf.keras) and PyTorch functionality entirely and there is no new syntax or templates to learn. Talos is made for data scientists and data engineers that want to remain in complete control of their TensorFlow (tf.keras) and PyTorch models, but are tired of mindless parameter hopping and confusing optimization solutions that add complexity instead of reducing it. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    Kubeflow pipelines

    Kubeflow pipelines

    Machine Learning Pipelines for Kubeflow

    Kubeflow is a machine learning (ML) toolkit that is dedicated to making deployments of ML workflows on Kubernetes simple, portable, and scalable. A pipeline is a description of an ML workflow, including all of the components in the workflow and how they combine in the form of a graph. The pipeline includes the definition of the inputs (parameters) required to run the pipeline and the inputs and outputs of each component. A pipeline component is a self-contained set of user code, packaged as a Docker image, that performs one step in the pipeline. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 7
    AutoMLPipeline.jl

    AutoMLPipeline.jl

    Package that makes it trivial to create and evaluate machine learning

    ...It leverages on the built-in macro programming features of Julia to symbolically process, and manipulate pipeline expressions and makes it easy to discover optimal structures for machine learning regression and classification. To illustrate, here is a pipeline expression and evaluation of a typical machine learning workflow that extracts numerical features (numf) for ica (Independent Component Analysis) and pca (Principal Component Analysis) transformations, respectively, concatenated with the hot-bit encoding (ohe) of categorical features (catf) of a given data for rf (Random Forest) modeling.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    Gradio

    Gradio

    Create UIs for your machine learning model in Python in 3 minutes

    ...Hugging Face Spaces will host the interface on its servers and provide you with a link you can share. One of the best ways to share your machine learning model, API, or data science workflow with others is to create an interactive demo that allows your users or colleagues to try out the demo in their browsers.
    Downloads: 16 This Week
    Last Update:
    See Project
  • 9
    Diffgram

    Diffgram

    Training data (data labeling, annotation, workflow) for all data types

    From ingesting data to exploring it, annotating it, and managing workflows. Diffgram is a single application that will improve your data labeling and bring all aspects of training data under a single roof. Diffgram is world’s first truly open source training data platform that focuses on giving its users an unlimited experience. This is aimed to reduce your data labeling bills and increase your Training Data Quality. Training Data is the art of supervising machines through data. This...
    Downloads: 4 This Week
    Last Update:
    See Project
  • Rent Manager Software Icon
    Rent Manager Software

    Landlords, multi-family homes, manufactured home communities, single family homes, associations, commercial properties and mixed portfolios.

    Rent Manager is award-winning property management software built for residential, commercial, and short-term-stay portfolios of any size. The program’s fully customizable features include a double-entry accounting system, maintenance management/scheduling, marketing integration, mobile applications, more than 450 insightful reports, and an API that integrates with the best PropTech providers on the market.
    Learn More
  • 10
    PostgresML

    PostgresML

    The GPU-powered AI application database

    ...Build simpler, faster, and more scalable models right inside your database. Explore the SDK and test open source models in our hosted database. Combine and automate the entire workflow from embedding generation to indexing and querying for the simplest (and fastest) knowledge-based chatbot implementation. Leverage multiple types of natural language processing and machine learning models such as vector search and personalization with embeddings to improve search results. Leverage your data with time series forecasting to garner key business insights. ...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 11
    Featuretools

    Featuretools

    An open source python library for automated feature engineering

    An open source Python framework for automated feature engineering. Featuretools automatically creates features from temporal and relational datasets. Featuretools uses DFS for automated feature engineering. You can combine your raw data with what you know about your data to build meaningful features for machine learning and predictive modeling. Featuretools provides APIs to ensure only valid data is used for calculations, keeping your feature vectors safe from common label leakage problems....
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    Raster Vision

    Raster Vision

    Open source framework for deep learning satellite and aerial imagery

    ...There is built-in support for chip classification, object detection, and semantic segmentation using PyTorch. Raster Vision allows engineers to quickly and repeatably configure pipelines that go through core components of a machine learning workflow: analyzing training data, creating training chips, training models, creating predictions, evaluating models, and bundling the model files and configuration for easy deployment. The input to a Raster Vision pipeline is a set of images and training data, optionally with Areas of Interest (AOIs) that describe where the images are labeled. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 13
    PML

    PML

    The easiest way to use deep metric learning in your application

    This library contains 9 modules, each of which can be used independently within your existing codebase, or combined together for a complete train/test workflow. To compute the loss in your training loop, pass in the embeddings computed by your model, and the corresponding labels. The embeddings should have size (N, embedding_size), and the labels should have size (N), where N is the batch size. The TripletMarginLoss computes all possible triplets within the batch, based on the labels you pass into it. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    AWS Neuron

    AWS Neuron

    Powering Amazon custom machine learning chips

    ...You can continue to use the same ML frameworks you use today and migrate your software onto Inf1 instances with minimal code changes and without tie-in to vendor-specific solutions. Neuron is pre-integrated into popular machine learning frameworks like TensorFlow, MXNet and Pytorch to provide a seamless training-to-inference workflow. It includes a compiler, runtime driver, as well as debug and profiling utilities with a TensorBoard plugin for visualization.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    FEDML Open Source

    FEDML Open Source

    The unified and scalable ML library for large-scale training

    ...Highly integrated with TensorOpera open source library, TensorOpera AI provides holistic support of three interconnected AI infrastructure layers: user-friendly MLOps, a well-managed scheduler, and high-performance ML libraries for running any AI jobs across GPU Clouds. A typical workflow is shown in the figure above. When a developer wants to run a pre-built job in Studio or Job Store, TensorOperaLaunch swiftly pairs AI jobs with the most economical GPU resources, and auto-provisions, and effortlessly runs the job, eliminating complex environment setup and management.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    ADAMS

    ADAMS

    ADAMS is a workflow engine for building complex knowledge workflows.

    ADAMS is a flexible workflow engine aimed at quickly building and maintaining data-driven, reactive workflows, easily integrated into business processes. Instead of placing operators on a canvas and manually connecting them, a tree structure and flow control operators determine how data is processed (sequentially/parallel). This allows rapid development and easy maintenance of large workflows, with hundreds or thousands of operators.
    Leader badge
    Downloads: 4 This Week
    Last Update:
    See Project
  • 17
    Lightning-Hydra-Template

    Lightning-Hydra-Template

    PyTorch Lightning + Hydra. A very user-friendly template

    Convenient all-in-one technology stack for deep learning prototyping - allows you to rapidly iterate over new models, datasets and tasks on different hardware accelerators like CPUs, multi-GPUs or TPUs. A collection of best practices for efficient workflow and reproducibility. Thoroughly commented - you can use this repo as a reference and educational resource. Not fitted for data engineering - the template configuration setup is not designed for building data processing pipelines that depend on each other. PyTorch Lightning, a lightweight PyTorch wrapper for high-performance AI research. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 18
    Kanaries RATH

    Kanaries RATH

    Next generation of automated data exploratory analysis visualization

    RATH is not just an open-source alternative to Data Analysis and Visualization tools such as Tableau, but it automates your Exploratory Data Analysis workflow with an Augmented Analytic engine by discovering patterns, insights, causals and presents those insights with powerful auto-generated multi-dimensional data visualization.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 19
    Yellowbrick

    Yellowbrick

    Visual analysis and diagnostic tools to facilitate ML selection

    ...In a nutshell, Yellowbrick combines scikit-learn with matplotlib in the best tradition of the scikit-learn documentation, but to produce visualizations for your machine learning workflow.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    Weka

    Weka

    Machine learning software to solve data mining problems

    Weka is a collection of machine learning algorithms for solving real-world data mining problems. It is written in Java and runs on almost any platform. The algorithms can either be applied directly to a dataset or called from your own Java code.
    Leader badge
    Downloads: 13,010 This Week
    Last Update:
    See Project
  • 21
    Couler

    Couler

    Unified Interface for Constructing and Managing Workflows

    Couler is a system designed for unified machine learning workflow optimization in the cloud. Couler endeavors to provide a unified interface for constructing and optimizing workflows across various workflow engines, such as Argo Workflows, Tekton Pipelines, and Apache Airflow. Couler enhances workflow efficiency through features like Autonomous Workflow Construction, Automatic Artifact Caching Mechanisms, Big Workflow Auto Parallelism Optimization, and Automatic Hyperparameters Tuning.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    ML for Trading

    ML for Trading

    Code for machine learning for algorithmic trading, 2nd edition

    On over 800 pages, this revised and expanded 2nd edition demonstrates how ML can add value to algorithmic trading through a broad range of applications. Organized in four parts and 24 chapters, it covers the end-to-end workflow from data sourcing and model development to strategy backtesting and evaluation. Covers key aspects of data sourcing, financial feature engineering, and portfolio management. The design and evaluation of long-short strategies based on a broad range of ML algorithms, how to extract tradeable signals from financial text data like SEC filings, earnings call transcripts or financial news. ...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 23
    automl-gs

    automl-gs

    Provide an input CSV and a target field to predict, generate a model

    Give an input CSV file and a target field you want to predict to automl-gs, and get a trained high-performing machine learning or deep learning model plus native Python code pipelines allowing you to integrate that model into any prediction workflow. No black box: you can see exactly how the data is processed, and how the model is constructed, and you can make tweaks as necessary. automl-gs is an AutoML tool which, unlike Microsoft's NNI, Uber's Ludwig, and TPOT, offers a zero code/model definition interface to getting an optimized model and data transformation pipeline in multiple popular ML/DL frameworks, with minimal Python dependencies (pandas + scikit-learn + your framework of choice). automl-gs is designed for citizen data scientists and engineers without a deep statistical background under the philosophy that you don't need to know any modern data preprocessing and machine learning engineering techniques to create a powerful prediction workflow.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    Flamingo Project

    Flamingo Project

    Workflow Designer, Hive Editor, Pig Editor, File System Browser

    Flamingo is a open-source Big Data Platform that combine a Ajax Rich Web Interface + Workflow Engine + Workflow Designer + MapReduce + Hive Editor + Pig Editor. 1. Easy Tool for big data 2. Use comfortable in Hadoop EcoSystem projects 3. Based GPL V3 License Supporting Pig IDE, Hive IDE, HDFS Browser, Scheduler, Hadoop Job Monitoring, Workflow Engine, Workflow Designer, MapReduce.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    KeplerWeka adds the functionality of the open-source machine learning and data mining workbench WEKA to the free and open-source, scientific workflow application, Kepler.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next