Showing 19 open source projects for "tune"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Incredable is the first DLT-secured platform that allows you to save time, eliminate errors, and ensure your organization is compliant all in one place. Icon
    Incredable is the first DLT-secured platform that allows you to save time, eliminate errors, and ensure your organization is compliant all in one place.

    For healthcare Providers and Facilities

    Incredable streamlines and simplifies the complex process of medical credentialing for hospitals and medical facilities, helping you save valuable time, reduce costs, and minimize risks. With Incredable, you can effortlessly manage all your healthcare providers and their credentials within a single, unified platform. Our state-of-the-art technology ensures top-notch data security, giving you peace of mind.
    Learn More
  • 1
    Katib

    Katib

    Automated Machine Learning on Kubernetes

    ...Katib supports Hyperparameter Tuning, Early Stopping and Neural Architecture Search. Katib is a project that is agnostic to machine learning (ML) frameworks. It can tune hyperparameters of applications written in any language of the users’ choice and natively supports many ML frameworks, such as TensorFlow, Apache MXNet, PyTorch, XGBoost, and others. Katib can perform training jobs using any Kubernetes Custom Resources with out-of-the-box support for Kubeflow Training Operator, Argo Workflows, Tekton Pipelines, and many more.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    MLJAR Studio

    MLJAR Studio

    Python package for AutoML on Tabular Data with Feature Engineering

    We are working on new way for visual programming. We developed a desktop application called MLJAR Studio. It is a notebook-based development environment with interactive code recipes and a managed Python environment. All running locally on your machine. We are waiting for your feedback. The mljar-supervised is an Automated Machine Learning Python package that works with tabular data. It is designed to save time for a data scientist. It abstracts the common way to preprocess the data,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    Nixtla TimeGPT

    Nixtla TimeGPT

    TimeGPT-1: production ready pre-trained Time Series Foundation Model

    TimeGPT is a production ready, generative pretrained transformer for time series. It's capable of accurately predicting various domains such as retail, electricity, finance, and IoT with just a few lines of code. Whether you're a bank forecasting market trends or a startup predicting product demand, TimeGPT democratizes access to cutting-edge predictive insights, eliminating the need for a dedicated team of machine learning engineers. A generative model for time series. TimeGPT is capable of...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    Arize Phoenix

    Arize Phoenix

    Uncover insights, surface problems, monitor, and fine tune your LLM

    Phoenix provides ML insights at lightning speed with zero-config observability for model drift, performance, and data quality. Phoenix is an Open Source ML Observability library designed for the Notebook. The toolset is designed to ingest model inference data for LLMs, CV, NLP and tabular datasets. It allows Data Scientists to quickly visualize their model data, monitor performance, track down issues & insights, and easily export to improve. Deep Learning Models (CV, LLM, and Generative)...
    Downloads: 2 This Week
    Last Update:
    See Project
  • Turn more customers into advocates. Icon
    Turn more customers into advocates.

    Fight skyrocketing paid media costs by turning your customers into a primary vehicle for acquisition, awareness, and activation with Extole.

    The platform's advanced capabilities ensure companies get the most out of their referral programs. Leverage custom events, profiles, and attributes to enable dynamic, audience-specific referral experiences. Use first-party data to tailor customer segment messaging, rewards, and engagement strategies. Use our flexible APIs to build management capabilities and consumer experiences–headlessly or hybrid. We have all the tools you need to build scalable, secure, and high-performing referral programs.
    Learn More
  • 5
    sktime

    sktime

    A unified framework for machine learning with time series

    ...Currently, this includes time series classification, regression, clustering, annotation, and forecasting. It comes with time series algorithms and scikit-learn compatible tools to build, tune and validate time series models. Our objective is to enhance the interoperability and usability of the time series analysis ecosystem in its entirety. sktime provides a unified interface for distinct but related time series learning tasks. It features dedicated time series algorithms and tools for composite model building such as pipelining, ensembling, tuning, and reduction, empowering users to apply an algorithm designed for one task to another.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    Transformers

    Transformers

    State-of-the-art Machine Learning for Pytorch, TensorFlow, and JAX

    ...Audio, for tasks like speech recognition and audio classification. Transformers provides APIs to quickly download and use those pretrained models on a given text, fine-tune them on your own datasets and then share them with the community on our model hub. At the same time, each python module defining an architecture is fully standalone and can be modified to enable quick research experiments.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 7
    PyBroker

    PyBroker

    Algorithmic Trading in Python with Machine Learning

    ...This Python framework is designed for developing algorithmic trading strategies, with a focus on strategies that use machine learning. With PyBroker, you can easily create and fine-tune trading rules, build powerful models, and gain valuable insights into your strategy’s performance.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 8
    Core ML Tools

    Core ML Tools

    Core ML tools contain supporting tools for Core ML model conversion

    ...Core ML is an Apple framework to integrate machine learning models into your app. Core ML provides a unified representation for all models. Your app uses Core ML APIs and user data to make predictions, and to fine-tune models, all on the user’s device. Core ML optimizes on-device performance by leveraging the CPU, GPU, and Neural Engine while minimizing its memory footprint and power consumption. Running a model strictly on the user’s device removes any need for a network connection, which helps keep the user’s data private and your app responsive.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    Determined

    Determined

    Determined, deep learning training platform

    The fastest and easiest way to build deep learning models. Distributed training without changing your model code. Determined takes care of provisioning machines, networking, data loading, and fault tolerance. Build more accurate models faster with scalable hyperparameter search, seamlessly orchestrated by Determined. Use state-of-the-art algorithms and explore results with our hyperparameter search visualizations. Interpret your experiment results using the Determined UI and TensorBoard, and...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Payments you can rely on to run smarter. Icon
    Payments you can rely on to run smarter.

    Never miss a sale. Square payment processing serves customers better with tools and integrations that make work more efficient.

    Accept payments at your counter or on the go. It’s easy to get started. Try the Square POS app on your phone or pick from a range of hardworking hardware.
    Learn More
  • 10
    AutoGluon

    AutoGluon

    AutoGluon: AutoML for Image, Text, and Tabular Data

    ...Automatically utilize state-of-the-art techniques (where appropriate) without expert knowledge. Leverage automatic hyperparameter tuning, model selection/ensembling, architecture search, and data processing. Easily improve/tune your bespoke models and data pipelines, or customize AutoGluon for your use-case. AutoGluon is modularized into sub-modules specialized for tabular, text, or image data. You can reduce the number of dependencies required by solely installing a specific sub-module via: python3 -m pip install <submodule>.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    PostgresML

    PostgresML

    The GPU-powered AI application database

    PostgresML is a complete platform in a PostgreSQL extension. Build simpler, faster, and more scalable models right inside your database. Explore the SDK and test open source models in our hosted database. Combine and automate the entire workflow from embedding generation to indexing and querying for the simplest (and fastest) knowledge-based chatbot implementation. Leverage multiple types of natural language processing and machine learning models such as vector search and personalization...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    Ray

    Ray

    A unified framework for scalable computing

    ...Accelerate your PyTorch and Tensorflow workload with a more resource-efficient and flexible distributed execution framework powered by Ray. Accelerate your hyperparameter search workloads with Ray Tune. Find the best model and reduce training costs by using the latest optimization algorithms. Deploy your machine learning models at scale with Ray Serve, a Python-first and framework agnostic model serving framework. Scale reinforcement learning (RL) with RLlib, a framework-agnostic RL library that ships with 30+ cutting-edge RL algorithms including A3C, DQN, and PPO. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    Transformer Reinforcement Learning X

    Transformer Reinforcement Learning X

    A repo for distributed training of language models with Reinforcement

    trlX is a distributed training framework designed from the ground up to focus on fine-tuning large language models with reinforcement learning using either a provided reward function or a reward-labeled dataset. Training support for Hugging Face models is provided by Accelerate-backed trainers, allowing users to fine-tune causal and T5-based language models of up to 20B parameters, such as facebook/opt-6.7b, EleutherAI/gpt-neox-20b, and google/flan-t5-xxl. For models beyond 20B parameters, trlX provides NVIDIA NeMo-backed trainers that leverage efficient parallelism techniques to scale effectively.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    ModelFox

    ModelFox

    ModelFox makes it easy to train, deploy, and monitor ML models

    ModelFox makes it easy to train, deploy, and monitor machine learning models. Train a model from a CSV file on the command line. Make predictions from Elixir, Go, JavaScript, PHP, Python, Ruby, or Rust. Learn about your models and monitor them in production from your browser. ModelFox makes it easy to train, deploy, and monitor machine learning models. You can install the modelfox CLI by either downloading the binary from the latest GitHub release or by building from source. Train a machine...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    Delta ML

    Delta ML

    Deep learning based natural language and speech processing platform

    ...DELTA has been used for developing several state-of-the-art algorithms for publications and delivering real production to serve millions of users. It helps you to train, develop, and deploy NLP and/or speech models. Use configuration files to easily tune parameters and network structures. What you see in training is what you get in serving: all data processing and features extraction are integrated into a model graph. Text classification, named entity recognition, question and answering, text summarization, etc. Uniform I/O interfaces and no changes for new models.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    MatchZoo

    MatchZoo

    Facilitating the design, comparison and sharing of deep text models

    ...Preprocess your input data in three lines of code, keep track parameters to be passed into the model. Make use of MatchZoo customized loss functions and evaluation metrics. Initialize the model, fine-tune the hyper-parameters. Generate pair-wise training data on-the-fly, evaluate model performance using customized callbacks on validation data. MatchZoo is dependent on Keras and Tensorflow.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    CakeChat

    CakeChat

    CakeChat: Emotional Generative Dialog System

    CakeChat is a backend for chatbots that are able to express emotions via conversations. The code is flexible and allows to condition model's responses by an arbitrary categorical variable. For example, you can train your own persona-based neural conversational model or create an emotional chatting machine. Hierarchical Recurrent Encoder-Decoder (HRED) architecture for handling deep dialog context. Multilayer RNN with GRU cells. The first layer of the utterance-level encoder is always...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    Apache PredictionIO

    Apache PredictionIO

    Machine learning server for developers and ML engineers

    ...Quickly build and deploy an engine as a web service on production with customizable templates; respond to dynamic queries in real-time once deployed as a web service; evaluate and tune multiple engine variants systematically; unify data from multiple platforms in batch or in real-time for comprehensive predictive analytics; speed up machine learning modeling with systematic processes and pre-built evaluation measures; support machine learning and data processing libraries such as Spark MLLib and OpenNLP; implement your own machine learning models and seamlessly incorporate them into your engine; simplify data infrastructure management.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    Clever Algorithms

    Clever Algorithms

    Clever Algorithms: Nature-Inspired Programming Recipes

    ...The catalog spans evolutionary algorithms, swarm intelligence, immune systems, simulated annealing, tabu search, and other metaheuristics, plus guidance on when and how to tune them. Example implementations and worked problems show how to encode solutions, define fitness, and balance exploration with exploitation. The emphasis is on pragmatism—enough theory to understand why an algorithm works, and enough detail to get it running in your environment. It’s a useful starting point for students and practitioners who want to prototype, benchmark, or hybridize algorithms without digging through scattered academic papers.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next