Showing 60 open source projects for "test"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Context for your AI agents Icon
    Context for your AI agents

    Crawl websites, sync to vector databases, and power RAG applications. Pre-built integrations for LLM pipelines and AI assistants.

    Build data pipelines that feed your AI models and agents without managing infrastructure. Crawl any website, transform content, and push directly to your preferred vector store. Use 10,000+ tools for RAG applications, AI assistants, and real-time knowledge bases. Monitor site changes, trigger workflows on new data, and keep your AIs fed with fresh, structured information. Cloud-native, API-first, and free to start until you need to scale.
    Try for free
  • 1
    Ludwig

    Ludwig

    A codeless platform to train and test deep learning models

    Ludwig is a toolbox built on top of TensorFlow that allows to train and test deep learning models without the need to write code. All you need to provide is a CSV file containing your data, a list of columns to use as inputs, and a list of columns to use as outputs, Ludwig will do the rest. Simple commands can be used to train models both locally and in a distributed way, and to use them to predict on new data.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 2
    YOLOv5

    YOLOv5

    YOLOv5 is the world's most loved vision AI

    Introducing Ultralytics YOLOv8, the latest version of the acclaimed real-time object detection and image segmentation model. YOLOv8 is built on cutting-edge advancements in deep learning and computer vision, offering unparalleled performance in terms of speed and accuracy. Its streamlined design makes it suitable for various applications and easily adaptable to different hardware platforms, from edge devices to cloud APIs. Explore the YOLOv8 Docs, a comprehensive resource designed to help...
    Downloads: 51 This Week
    Last Update:
    See Project
  • 3
    PML

    PML

    The easiest way to use deep metric learning in your application

    This library contains 9 modules, each of which can be used independently within your existing codebase, or combined together for a complete train/test workflow. To compute the loss in your training loop, pass in the embeddings computed by your model, and the corresponding labels. The embeddings should have size (N, embedding_size), and the labels should have size (N), where N is the batch size. The TripletMarginLoss computes all possible triplets within the batch, based on the labels you pass into it. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    dlib

    dlib

    Toolkit for making machine learning and data analysis applications

    ...It is used in both industry and academia in a wide range of domains including robotics, embedded devices, mobile phones, and large high performance computing environments. Dlib's open source licensing allows you to use it in any application, free of charge. Good unit test coverage, the ratio of unit test lines of code to library lines of code is about 1 to 4. The library is tested regularly on MS Windows, Linux, and Mac OS X systems. No other packages are required to use the library, only APIs that are provided by an out of the box OS are needed. There is no installation or configure step needed before you can use the library. ...
    Downloads: 3 This Week
    Last Update:
    See Project
  • G-P - Global EOR Solution Icon
    G-P - Global EOR Solution

    Companies searching for an Employer of Record solution to mitigate risk and manage compliance, taxes, benefits, and payroll anywhere in the world

    With G-P's industry-leading Employer of Record (EOR) and Contractor solutions, you can hire, onboard and manage teams in 180+ countries — quickly and compliantly — without setting up entities.
    Learn More
  • 5
    Evidently

    Evidently

    Evaluate and monitor ML models from validation to production

    Evidently is an open-source Python library for data scientists and ML engineers. It helps evaluate, test, and monitor ML models from validation to production. It works with tabular, text data and embeddings.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 6
    Torch-TensorRT

    Torch-TensorRT

    PyTorch/TorchScript/FX compiler for NVIDIA GPUs using TensorRT

    Torch-TensorRT is a compiler for PyTorch/TorchScript, targeting NVIDIA GPUs via NVIDIA’s TensorRT Deep Learning Optimizer and Runtime. Unlike PyTorch’s Just-In-Time (JIT) compiler, Torch-TensorRT is an Ahead-of-Time (AOT) compiler, meaning that before you deploy your TorchScript code, you go through an explicit compile step to convert a standard TorchScript program into a module targeting a TensorRT engine. Torch-TensorRT operates as a PyTorch extension and compiles modules that integrate...
    Downloads: 8 This Week
    Last Update:
    See Project
  • 7
    Deepchecks

    Deepchecks

    Test Suites for validating ML models & data

    Deepchecks is the leading tool for testing and for validating your machine learning models and data, and it enables doing so with minimal effort. Deepchecks accompany you through various validation and testing needs such as verifying your data’s integrity, inspecting its distributions, validating data splits, evaluating your model and comparing between different models. While you’re in the research phase, and want to validate your data, find potential methodological problems, and/or validate...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    Simd Library

    Simd Library

    C++ image processing and machine learning library with using of SIMD

    The Simd Library is a free open-source image processing and machine learning library, designed for C and C++ programmers. It provides many useful high-performance algorithms for image processing such as pixel format conversion, image scaling and filtration, extraction of statistical information from images, motion detection, object detection and classification, neural networks. The algorithms are optimized with using of different SIMD CPU extensions. In particular, the library supports the...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 9
    tf2onnx

    tf2onnx

    Convert TensorFlow, Keras, Tensorflow.js and Tflite models to ONNX

    ...TensorFlow has many more ops than ONNX and occasionally mapping a model to ONNX creates issues. tf2onnx will use the ONNX version installed on your system and installs the latest ONNX version if none is found. We support and test ONNX opset-13 to opset-17. opset-6 to opset-12 should work but we don't test them. If you want the graph to be generated with a specific opset, use --opset in the command line, for example --opset 13. When running under tf-2.x tf2onnx will use the tensorflow V2 controlflow.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Reach Your Audience with Rise Vision, the #1 Cloud Digital Signage Software Solution Icon
    Reach Your Audience with Rise Vision, the #1 Cloud Digital Signage Software Solution

    K-12 Schools, Higher Education, Businesses, Restaurants

    Rise Vision is the #1 digital signage company, offering easy-to-use cloud digital signage software compatible with any player across multiple screens. Forget about static displays. Save time and boost sales with 500+ customizable content templates for your screens. If you ever need help, get free training and exceptionally fast support.
    Learn More
  • 10
    Raster Vision

    Raster Vision

    Open source framework for deep learning satellite and aerial imagery

    Raster Vision is an open source framework for Python developers building computer vision models on satellite, aerial, and other large imagery sets (including oblique drone imagery). There is built-in support for chip classification, object detection, and semantic segmentation using PyTorch. Raster Vision allows engineers to quickly and repeatably configure pipelines that go through core components of a machine learning workflow: analyzing training data, creating training chips, training...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 11
    UpTrain

    UpTrain

    Your open-source LLM evaluation toolkit

    Get scores for factual accuracy, context retrieval quality, guideline adherence, tonality, and many more. You can’t improve what you can’t measure. UpTrain continuously monitors your application's performance on multiple evaluation criterions and alerts you in case of any regressions with automatic root cause analysis. UpTrain enables fast and robust experimentation across multiple prompts, model providers, and custom configurations, by calculating quantitative scores for direct comparison...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    AIF360

    AIF360

    A comprehensive set of fairness metrics for datasets

    This extensible open source toolkit can help you examine, report, and mitigate discrimination and bias in machine learning models throughout the AI application lifecycle. We invite you to use and improve it. The AI Fairness 360 toolkit is an extensible open-source library containing techniques developed by the research community to help detect and mitigate bias in machine learning models throughout the AI application lifecycle. AI Fairness 360 package is available in both Python and R. The...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    Pytorch-toolbelt

    Pytorch-toolbelt

    PyTorch extensions for fast R&D prototyping and Kaggle farming

    A pytorch-toolbelt is a Python library with a set of bells and whistles for PyTorch for fast R&D prototyping and Kaggle farming. Easy model building using flexible encoder-decoder architecture. Modules: CoordConv, SCSE, Hypercolumn, Depthwise separable convolution and more. GPU-friendly test-time augmentation TTA for segmentation and classification. GPU-friendly inference on huge (5000x5000) images. Every-day common routines (fix/restore random seed, filesystem utils, metrics). Losses: BinaryFocalLoss, Focal, ReducedFocal, Lovasz, Jaccard and Dice losses, Wing Loss and more. Extras for Catalyst library (Visualization of batch predictions, additional metrics). ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    PyTorch Geometric Temporal

    PyTorch Geometric Temporal

    Spatiotemporal Signal Processing with Neural Machine Learning Models

    The library consists of various dynamic and temporal geometric deep learning, embedding, and Spatio-temporal regression methods from a variety of published research papers. Moreover, it comes with an easy-to-use dataset loader, train-test splitter and temporal snaphot iterator for dynamic and temporal graphs. The framework naturally provides GPU support. It also comes with a number of benchmark datasets from the epidemiological forecasting, sharing economy, energy production and web traffic management domains. Finally, you can also create your own datasets. The package interfaces well with Pytorch Lightning which allows training on CPUs, single and multiple GPUs out-of-the-box. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    GluonTS

    GluonTS

    Probabilistic time series modeling in Python

    ...The dataset consists of a single time-series, containing monthly international passengers between the years 1949 and 1960, a total of 144 values (12 years * 12 months). We split the dataset into train and test parts, by removing the last three years (36 months) from the train data. Thus, we will train a model on just the first nine years of data. Python has the notion of extras – dependencies that can be optionally installed to unlock certain features of a package. We make extensive use of optional dependencies in GluonTS to keep the amount of required dependencies minimal. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    PySyft

    PySyft

    Data science on data without acquiring a copy

    Most software libraries let you compute over the information you own and see inside of machines you control. However, this means that you cannot compute on information without first obtaining (at least partial) ownership of that information. It also means that you cannot compute using machines without first obtaining control over those machines. This is very limiting to human collaboration and systematically drives the centralization of data, because you cannot work with a bunch of data...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    PostgresML

    PostgresML

    The GPU-powered AI application database

    PostgresML is a complete platform in a PostgreSQL extension. Build simpler, faster, and more scalable models right inside your database. Explore the SDK and test open source models in our hosted database. Combine and automate the entire workflow from embedding generation to indexing and querying for the simplest (and fastest) knowledge-based chatbot implementation. Leverage multiple types of natural language processing and machine learning models such as vector search and personalization with embeddings to improve search results. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    Lightweight' GAN

    Lightweight' GAN

    Implementation of 'lightweight' GAN, proposed in ICLR 2021

    ...Quoting the one-line summary "converge on single gpu with few hours' training, on 1024 resolution sub-hundred images". Augmentation is essential for Lightweight GAN to work effectively in a low data setting. You can test and see how your images will be augmented before they pass into a neural network (if you use augmentation). The general recommendation is to use suitable augs for your data and as many as possible, then after some time of training disable the most destructive (for image) augs. You can turn on automatic mixed precision with one flag --amp. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    MMDeploy

    MMDeploy

    OpenMMLab Model Deployment Framework

    MMDeploy is an open-source deep learning model deployment toolset. It is a part of the OpenMMLab project. Models can be exported and run in several backends, and more will be compatible. All kinds of modules in the SDK can be extended, such as Transform for image processing, Net for Neural Network inference, Module for postprocessing and so on. Install and build your target backend. ONNX Runtime is a cross-platform inference and training accelerator compatible with many popular ML/DNN...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 20
    PromptTools

    PromptTools

    Open-source tools for prompt testing and experimentation

    Welcome to prompttools created by Hegel AI! This repo offers a set of open-source, self-hostable tools for experimenting with, testing, and evaluating LLMs, vector databases, and prompts. The core idea is to enable developers to evaluate using familiar interfaces like code, notebooks, and a local playground.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    SSD in PyTorch 1.0

    SSD in PyTorch 1.0

    High quality, fast, modular reference implementation of SSD in PyTorch

    ...The implementation is heavily influenced by the projects ssd.pytorch, pytorch-ssd and maskrcnn-benchmark. This repository aims to be the code base for research based on SSD. Multi-GPU training and inference: We use DistributedDataParallel, you can train or test with arbitrary GPU(s), the training schema will change accordingly. Add your own modules without pain. We abstract backbone, Detector, BoxHead, BoxPredictor, etc. You can replace every component with your own code without changing the code base. For example, You can add EfficientNet as the backbone, just add efficient_net.py (ALREADY ADDED) and register it, specific it in the config file, It's done! ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    CometAnalyser

    CometAnalyser

    CometAnalyser, for quantitative comet assay analysis.

    ...Once the comets are segmented and classified, several intensity/morphological features are automatically exported as a spreadsheet file. Video Tutorial: CometAnalyser is written in MATLAB. It works with Windows, Macintosh, and UNIX-based systems. Please, download the sample datasets and test it watching the video tutorial to understand how it works: https://www.youtube.com/watch?v=vh2VFnMw50A Contacts: filippo.piccinini85@gmail.com beleonattila@gmail.com
    Downloads: 15 This Week
    Last Update:
    See Project
  • 23
    Lightning-Hydra-Template

    Lightning-Hydra-Template

    PyTorch Lightning + Hydra. A very user-friendly template

    Convenient all-in-one technology stack for deep learning prototyping - allows you to rapidly iterate over new models, datasets and tasks on different hardware accelerators like CPUs, multi-GPUs or TPUs. A collection of best practices for efficient workflow and reproducibility. Thoroughly commented - you can use this repo as a reference and educational resource. Not fitted for data engineering - the template configuration setup is not designed for building data processing pipelines that...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    Knet

    Knet

    Koç University deep learning framework

    Knet.jl is a deep learning package implemented in Julia, so you should be able to run it on any machine that can run Julia. It has been extensively tested on Linux machines with NVIDIA GPUs and CUDA libraries, and it has been reported to work on OSX and Windows. If you would like to try it on your own computer, please follow the instructions on Installation. If you would like to try working with a GPU and do not have access to one, take a look at Using Amazon AWS or Using Microsoft Azure. If...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    CodeContests

    CodeContests

    Large dataset of coding contests designed for AI and ML model training

    ...CodeContests aggregates problems and human-written solutions from multiple programming competition platforms, including AtCoder, Codeforces, CodeChef, Aizu, and HackerEarth. Each problem includes structured metadata, problem descriptions, paired input/output test cases, and multiple correct and incorrect solutions in various programming languages. The dataset is distributed in Riegeli format using Protocol Buffers, with separate training, validation, and test splits for reproducible machine learning experiments.
    Downloads: 2 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • 3
  • Next