Showing 14 open source projects for "single user"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • AI-generated apps that pass security review Icon
    AI-generated apps that pass security review

    Stop waiting on engineering. Build production-ready internal tools with AI—on your company data, in your cloud.

    Retool lets you generate dashboards, admin panels, and workflows directly on your data. Type something like “Build me a revenue dashboard on my Stripe data” and get a working app with security, permissions, and compliance built in from day one. Whether on our cloud or self-hosted, create the internal software your team needs without compromising enterprise standards or control.
    Try Retool free
  • 1
    Petastorm

    Petastorm

    Petastorm library enables single machine or distributed training

    Petastorm library enables single machine or distributed training and evaluation of deep learning models from datasets in Apache Parquet format. It supports ML frameworks such as Tensorflow, Pytorch, and PySpark and can be used from pure Python code. Petastorm is an open-source data access library developed at Uber ATG. This library enables single machine or distributed training and evaluation of deep learning models directly from datasets in Apache Parquet format.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    PyTorch Geometric

    PyTorch Geometric

    Geometric deep learning extension library for PyTorch

    ...These packages come with their own CPU and GPU kernel implementations based on C++/CUDA extensions. We do not recommend installation as root user on your system python. Please setup an Anaconda/Miniconda environment or create a Docker image. We provide pip wheels for all major OS/PyTorch/CUDA combinations.
    Downloads: 12 This Week
    Last Update:
    See Project
  • 3
    PyTorch/XLA

    PyTorch/XLA

    Enabling PyTorch on Google TPU

    ...This is our recommedned way of running PyTorch/XLA on Cloud TPU. Please check out our Cloud TPU VM User Guide. Cloud TPU VM is currently on general availability and provides direct access to the TPU host. The recommended setup for running distributed training on TPU Pods uses the pairing of Compute VM Instance Groups and TPU Pods. Each of the Compute VM in the instance group drives 8 cores on the TPU Pod.
    Downloads: 19 This Week
    Last Update:
    See Project
  • 4
    MindsDB

    MindsDB

    Making Enterprise Data Intelligent and Responsive for AI

    MindsDB is an AI data solution that enables humans, AI, agents, and applications to query data in natural language and SQL, and get highly accurate answers across disparate data sources and types. MindsDB connects to diverse data sources and applications, and unifies petabyte-scale structured and unstructured data. Powered by an industry-first cognitive engine that can operate anywhere (on-prem, VPC, serverless), it empowers both humans and AI with highly informed decision-making...
    Downloads: 2 This Week
    Last Update:
    See Project
  • Cut Cloud Costs with Google Compute Engine Icon
    Cut Cloud Costs with Google Compute Engine

    Save up to 91% with Spot VMs and get automatic sustained-use discounts. One free VM per month, plus $300 in credits.

    Save on compute costs with Compute Engine. Reduce your batch jobs and workload bill 60-91% with Spot VMs. Compute Engine's committed use offers customers up to 70% savings through sustained use discounts. Plus, you get one free e2-micro VM monthly and $300 credit to start.
    Try Compute Engine
  • 5
    Datasets

    Datasets

    Hub of ready-to-use datasets for ML models

    ...There are currently over 2658 datasets, and more than 34 metrics available. Datasets naturally frees the user from RAM memory limitation, all datasets are memory-mapped using an efficient zero-serialization cost backend (Apache Arrow). Smart caching: never wait for your data to process several times.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    Sonnet

    Sonnet

    TensorFlow-based neural network library

    Sonnet is a neural network library built on top of TensorFlow designed to provide simple, composable abstractions for machine learning research. Sonnet can be used to build neural networks for various purposes, including different types of learning. Sonnet’s programming model revolves around a single concept: modules. These modules can hold references to parameters, other modules and methods that apply some function on the user input. There are a number of predefined modules that already ship with Sonnet, making it quite powerful and yet simple at the same time. Users are also encouraged to build their own modules. Sonnet is designed to be extremely unopinionated about your use of modules. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    GeoDMA

    GeoDMA

    Geographic feature extraction and data mining

    GeoDMA is a plugin for TerraView software, used for geographical data mining. With a single image, the user can perform segmentation, attributes extraction, normalization and classification.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8

    Lumixon

    This AI can answer any information based questions from the user.

    1. This AI is not yet prepared for human interactions or chatting. 2. The AI produces the complete information regarding the user's question and if you wish to search for another new question, you need to close and run the application again. This feature will be changed in the next release 3. Download and extract the files to your desired location and run the exe file in order to run the application. 4. The AI prints the website(s) links if it is unable to get an answer for the...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    Hugging Face Transformer

    Hugging Face Transformer

    CPU/GPU inference server for Hugging Face transformer models

    Optimize and deploy in production Hugging Face Transformer models in a single command line. At Lefebvre Dalloz we run in-production semantic search engines in the legal domain, in the non-marketing language it's a re-ranker, and we based ours on Transformer. In that setup, latency is key to providing a good user experience, and relevancy inference is done online for hundreds of snippets per user query. Most tutorials on Transformer deployment in production are built over Pytorch and FastAPI. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Cut Data Warehouse Costs up to 54% with BigQuery Icon
    Cut Data Warehouse Costs up to 54% with BigQuery

    Migrate from Snowflake, Databricks, or Redshift with free migration tools. Exabyte scale without the Exabyte price.

    BigQuery delivers up to 54% lower TCO than cloud alternatives. Migrate from legacy or competing warehouses using free BigQuery Migration Service with automated SQL translation. Get serverless scale with no infrastructure to manage, compressed storage, and flexible pricing—pay per query or commit for deeper discounts. New customers get $300 in free credit.
    Try BigQuery Free
  • 10
    Opyrator

    Opyrator

    Turns your machine learning code into microservices with web API

    ...Opyrator builds on open standards - OpenAPI, JSON Schema, and Python type hints - and is powered by FastAPI, Streamlit, and Pydantic. It cuts out all the pain for productizing and sharing your Python code - or anything you can wrap into a single Python function. An Opyrator-compatible function is required to have an input parameter and return value based on Pydantic models. The input and output models are specified via type hints. You can launch a graphical user interface - powered by Streamlit - for your compatible function. The UI is auto-generated from the input- and output-schema of the given function.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    Turi Create

    Turi Create

    Simplifies the development of custom machine learning models

    Turi Create simplifies the development of custom machine learning models. You don't have to be a machine learning expert to add recommendations, object detection, image classification, image similarity or activity classification to your app. If you want your app to recognize specific objects in images, you can build your own model with just a few lines of code. Turi Create supports macOS 10.12+, Linux (with glibc 2.10+), Windows 10 (via WSL). Turi Create requires Python 2.7, 3.5, 3.6, 3.7,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    X-DeepLearning

    X-DeepLearning

    An industrial deep learning framework for high-dimension sparse data

    X-DeepLearning (XDL for short) is a complete set of deep optimization solutions for high-dimensional sparse data scenarios (such as advertising/recommendation/search, etc.). XDL version 1.2 has been released recently. Performance optimization for large batch/low concurrency scenarios, 50-100% performance improvement in such scenarios. Storage and communication optimization, parameters are automatically allocated globally without manual intervention, and requests are merged to completely...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 13
    JCLAL

    JCLAL

    A Java Class Library for Active Learning

    JCLAL is a general purpose framework developed in Java for the active learning research area. JCLAL framework is open source software and it is distributed under the GNU general public license. It is constructed with a high-level software environment, with a strong object oriented design and use of design patterns, which allow to the developers reuse, modify and extend the framework. If you want to refer to JCLAL in a publication, please cite the following JMLR paper. The full citation...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 14

    Automatic cell lineage reconstruction

    Automatic segmentation and tracking for 3D time-lapse microscopy

    From Amat et al., Nature Methods, 2014*: "The comprehensive reconstruction of cell lineages in complex multicellular organisms is a central goal of developmental biology. We present an open-source computational framework for segmentation and tracking of cell nuclei with high accuracy and speed. We demonstrate its (1) generality, by reconstructing cell lineages in four-dimensional, terabyte-sized image data of fruit-fly, zebrafish and mouse embryos, acquired with three different types of...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next
MongoDB Logo MongoDB