Showing 18 open source projects for "performance java"

View related business solutions
  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    The database for AI-powered applications.

    MongoDB Atlas is the developer-friendly database used to build, scale, and run gen AI and LLM-powered apps—without needing a separate vector database. Atlas offers built-in vector search, global availability across 115+ regions, and flexible document modeling. Start building AI apps faster, all in one place.
    Start Free
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • 1
    Deep Java Library (DJL)

    Deep Java Library (DJL)

    An engine-agnostic deep learning framework in Java

    Deep Java Library (DJL) is an open-source, high-level, engine-agnostic Java framework for deep learning. DJL is designed to be easy to get started with and simple to use for Java developers. DJL provides native Java development experience and functions like any other regular Java library. You don't have to be a machine learning/deep learning expert to get started.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 2
    TorchServe

    TorchServe

    Serve, optimize and scale PyTorch models in production

    TorchServe is a performant, flexible and easy-to-use tool for serving PyTorch eager mode and torschripted models. Multi-model management with the optimized worker to model allocation. REST and gRPC support for batched inference. Export your model for optimized inference. Torchscript out of the box, ORT, IPEX, TensorRT, FasterTransformer. Performance Guide: built-in support to optimize, benchmark and profile PyTorch and TorchServe performance. Expressive handlers: An expressive handler...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 3
    CatBoost

    CatBoost

    High-performance library for gradient boosting on decision trees

    CatBoost is a fast, high-performance open source library for gradient boosting on decision trees. It is a machine learning method with plenty of applications, including ranking, classification, regression and other machine learning tasks for Python, R, Java, C++. CatBoost offers superior performance over other GBDT libraries on many datasets, and has several superb features.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 4
    Angel

    Angel

    A Flexible and Powerful Parameter Server for large-scale ML

    Angel is a high-performance distributed machine learning and graph computing platform based on the philosophy of Parameter Server. It is tuned for performance with big data from Tencent and has a wide range of applicability and stability, demonstrating an increasing advantage in handling higher-dimension models. Angel is jointly developed by Tencent and Peking University, taking account of both high availability in industry and innovation in academia.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Keep company data safe with Chrome Enterprise Icon
    Keep company data safe with Chrome Enterprise

    Protect your business with AI policies and data loss prevention in the browser

    Make AI work your way with Chrome Enterprise. Block unapproved sites and set custom data controls that align with your company's policies.
    Download Chrome
  • 5
    The Julia Programming Language

    The Julia Programming Language

    High-level, high-performance dynamic language for technical computing

    ...Libraries from Python, R, C/Fortran, C++, and Java can also be used.
    Downloads: 8 This Week
    Last Update:
    See Project
  • 6
    Smile

    Smile

    Statistical machine intelligence and learning engine

    Smile is a fast and comprehensive machine learning engine. With advanced data structures and algorithms, Smile delivers the state-of-art performance. Compared to this third-party benchmark, Smile outperforms R, Python, Spark, H2O, xgboost significantly. Smile is a couple of times faster than the closest competitor. The memory usage is also very efficient. If we can train advanced machine learning models on a PC, why buy a cluster? Write applications quickly in Java, Scala, or any JVM languages. ...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 7
    tvm

    tvm

    Open deep learning compiler stack for cpu, gpu, etc.

    Apache TVM is an open source machine learning compiler framework for CPUs, GPUs, and machine learning accelerators. It aims to enable machine learning engineers to optimize and run computations efficiently on any hardware backend. The vision of the Apache TVM Project is to host a diverse community of experts and practitioners in machine learning, compilers, and systems architecture to build an accessible, extensible, and automated open-source framework that optimizes current and emerging...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 8
    Triton Inference Server

    Triton Inference Server

    The Triton Inference Server provides an optimized cloud

    ...A C API and Java API allow Triton to link directly into your application for edge and other in-process use cases.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    Alink

    Alink

    Alink is the Machine Learning algorithm platform based on Flink

    Alink is Alibaba’s scalable machine learning algorithm platform built on Apache Flink, designed for batch and stream data processing. It provides a wide variety of ready-to-use ML algorithms for tasks like classification, regression, clustering, recommendation, and more. Written in Java and Scala, Alink is suitable for enterprise-grade big data applications where performance and scalability are crucial. It supports model training, evaluation, and deployment in real-time environments and integrates seamlessly into Alibaba’s cloud ecosystem.
    Downloads: 1 This Week
    Last Update:
    See Project
  • Build Securely on Azure with Proven Frameworks Icon
    Build Securely on Azure with Proven Frameworks

    Lay a foundation for success with Tested Reference Architectures developed by Fortinet’s experts. Learn more in this white paper.

    Moving to the cloud brings new challenges. How can you manage a larger attack surface while ensuring great network performance? Turn to Fortinet’s Tested Reference Architectures, blueprints for designing and securing cloud environments built by cybersecurity experts. Learn more and explore use cases in this white paper.
    Download Now
  • 10
    ModelDB

    ModelDB

    Open Source ML Model Versioning, Metadata, and Experiment Management

    An open-source system for Machine Learning model versioning, metadata, and experiment management. ModelDB is an open-source system to version machine learning models including their ingredients code, data, config, and environment and to track ML metadata across the model lifecycle.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    Seldon Server

    Seldon Server

    Machine learning platform and recommendation engine on Kubernetes

    Seldon Server is a machine learning platform and recommendation engine built on Kubernetes. Seldon reduces time-to-value so models can get to work faster. Scale with confidence and minimize risk through interpretable results and transparent model performance. Seldon Core focuses purely on deploying a wide range of ML models on Kubernetes, allowing complex runtime serving graphs to be managed in production. Seldon Core is a progression of the goals of the Seldon-Server project but also a more...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    NNVM

    NNVM

    Open deep learning compiler stack for cpu, gpu

    The vision of the Apache NNVM Project is to host a diverse community of experts and practitioners in machine learning, compilers, and systems architecture to build an accessible, extensible, and automated open-source framework that optimizes current and emerging machine learning models for any hardware platform. Compilation of deep learning models into minimum deployable modules. Infrastructure to automatically generates and optimize models on more backend with better performance....
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13

    JCLTP

    A Java Class Library for Text Processing

    JCLTP is a class library designed for processing text. JCLTP is free, open source and developed with the Java programming language. JCLTP is distributed under the GNU license. It incorporates several technologies that enable process information while applying AI techniques, in order to build predictive models for text classification. Through a flexible structure of interfaces and classes, the opportunity to extend, adapt and add functionality JCLTP is provided. Thus, analysis of new types...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14

    GA-EoC

    GeneticAlgorithm-based search for Heterogeneous Ensemble Combinations

    In data classification, there are no particular classifiers that perform consistently in every case. This is even worst in case of both the high dimensional and class-imbalanced datasets. To overcome the limitations of class-imbalanced data, we split the dataset using a random sub-sampling to balance them. Then, we apply the (alpha,beta)-k feature set method to select a better subset of features and combine their outputs to get a consolidated feature set for classifier training. To...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15

    AdPreqFr4SL

    Adaptive Prequential Learning Framework

    The AdPreqFr4SL learning framework for Bayesian Network Classifiers is designed to handle the cost / performance trade-off and cope with concept drift. Our strategy for incorporating new data is based on bias management and gradual adaptation. Starting with the simple Naive Bayes, we scale up the complexity by gradually updating attributes and structure. Since updating the structure is a costly task, we use new data to primarily adapt the parameters and only if this is really necessary, do we...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16

    JaCHMM

    Java Conditioned Hidden Markov Model library

    The JaCHMM - the Java Conditioned Hidden Markov Model library - is a complete implementation of a CHMM in Java ready to use either on command line or as a module. The JaCHMM is licenced under the BSD licence. It gives an implementation of the Viterbi, Forward-Backward, Baum-Welch and K-Means algorithms, all adapted for the CHMM. JaCHMM is based on the JaHMM and also designed to achieve reasonable performance without making the code unreadable.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17

    cognity

    A neural network library for Java.

    Cognity is an object-oriented neural network library for Java. It's goal is to provide easy-to-use, high level architecture for neural network computations along with reasonable performance.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    SweetOnionCCG2PTBConverter

    SweetOnionCCG2PTBConverter

    A tool that converts CCGBank to PTB

    Conversion between different grammar frameworks is of great importance to comparative performance analysis of the parsers developed on them. This tool can convert CCG derivations to PTB trees by using Max Entropy models as well as visualizing the tree graphs. The main technical innovation presented here is the effective conversion method which achieves a F score over 95%.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next