Showing 23 open source projects for "patterns"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Desktop and Mobile Device Management Software Icon
    Desktop and Mobile Device Management Software

    It's a modern take on desktop management that can be scaled as per organizational needs.

    Desktop Central is a unified endpoint management (UEM) solution that helps in managing servers, laptops, desktops, smartphones, and tablets from a central location.
    Learn More
  • 1
    FSRS4Anki

    FSRS4Anki

    A modern Anki custom scheduling based on Free Spaced Repetition

    A modern spaced-repetition scheduler for Anki based on the Free Spaced Repetition Scheduler algorithm.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 2
    The Julia Programming Language

    The Julia Programming Language

    High-level, high-performance dynamic language for technical computing

    Julia is a fast, open source high-performance dynamic language for technical computing. It can be used for data visualization and plotting, deep learning, machine learning, scientific computing, parallel computing and so much more. Having a high level syntax, Julia is easy to use for programmers of every level and background. Julia has more than 2,800 community-registered packages including various mathematical libraries, data manipulation tools, and packages for general purpose...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 3
    AI-Job-Notes

    AI-Job-Notes

    AI algorithm position job search strategy

    AI-Job-Notes is a pragmatic notebook for landing roles in machine learning, computer vision, and related engineering tracks. It assembles study paths, checklists, and interview prep materials, but also covers job-search mechanics—portfolio building, resume patterns, and communication tips. The emphasis is on doing: practicing with project ideas, setting up reproducible experiments, and showcasing results that convey impact. It ties technical study (ML/DL fundamentals) to real hiring signals like problem-solving, code quality, and experiment logging. The repository’s structure encourages progressive preparation—from fundamentals to mock interviews and post-interview retrospectives. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    fastai

    fastai

    Deep learning library

    ...It aims to do both things without substantial compromises in ease of use, flexibility, or performance. This is possible thanks to a carefully layered architecture, which expresses common underlying patterns of many deep learning and data processing techniques in terms of decoupled abstractions. These abstractions can be expressed concisely and clearly by leveraging the dynamism of the underlying Python language and the flexibility of the PyTorch library. fastai is organized around two main design goals: to be approachable and rapidly productive, while also being deeply hackable and configurable. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • G-P - Global EOR Solution Icon
    G-P - Global EOR Solution

    Companies searching for an Employer of Record solution to mitigate risk and manage compliance, taxes, benefits, and payroll anywhere in the world

    With G-P's industry-leading Employer of Record (EOR) and Contractor solutions, you can hire, onboard and manage teams in 180+ countries — quickly and compliantly — without setting up entities.
    Learn More
  • 5
    TensorFlow Addons

    TensorFlow Addons

    Useful extra functionality for TensorFlow 2.x maintained by SIG-addons

    TensorFlow Addons is a repository of contributions that conform to well-established API patterns but implement new functionality not available in core TensorFlow. TensorFlow natively supports a large number of operators, layers, metrics, losses, and optimizers. However, in a fast-moving field like ML, there are many interesting new developments that cannot be integrated into core TensorFlow (because their broad applicability is not yet clear, or it is mostly used by a smaller subset of the community). ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 6
    Zylthra

    Zylthra

    Zylthra: A PyQt6 app to generate synthetic datasets with DataLLM.

    Welcome to Zylthra, a powerful Python-based desktop application built with PyQt6, designed to generate synthetic datasets using the DataLLM API from data.mostly.ai. This tool allows users to create custom datasets by defining columns, configuring generation parameters, and saving setups for reuse, all within a sleek, dark-themed interface.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    Kanaries RATH

    Kanaries RATH

    Next generation of automated data exploratory analysis visualization

    RATH is not just an open-source alternative to Data Analysis and Visualization tools such as Tableau, but it automates your Exploratory Data Analysis workflow with an Augmented Analytic engine by discovering patterns, insights, causals and presents those insights with powerful auto-generated multi-dimensional data visualization.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 8
    sense2vec

    sense2vec

    Contextually-keyed word vectors

    sense2vec (Trask et. al, 2015) is a nice twist on word2vec that lets you learn more interesting and detailed word vectors. This library is a simple Python implementation for loading, querying and training sense2vec models. For more details, check out our blog post. To explore the semantic similarities across all Reddit comments of 2015 and 2019, see the interactive demo.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    handson-ml2

    handson-ml2

    Jupyter notebooks that walk you through the fundamentals of ML

    ...Deep learning sections use the contemporary Keras/TensorFlow 2 ecosystem, highlighting clean APIs and eager execution to make experiments easier to reason about. Traditional ML topics remain central, with scikit-learn pipelines, feature engineering, and cross-validation patterns that transfer to real projects. The material favors clear explanations and runnable code over theory alone, so learners can iterate, visualize, and debug as they go. It’s suitable for self-study, classrooms, and as a reference for practitioners who want concise, working examples of common ML tasks.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Free and Open Source HR Software Icon
    Free and Open Source HR Software

    OrangeHRM provides a world-class HRIS experience and offers everything you and your team need to be that HR hero you know that you are.

    Give your HR team the tools they need to streamline administrative tasks, support employees, and make informed decisions with the OrangeHRM free and open source HR software.
    Learn More
  • 10
    MLOps Course

    MLOps Course

    Learn how to design, develop, deploy and iterate on ML apps

    The MLOps Course by Goku Mohandas is an open-source curriculum that teaches how to combine machine learning with solid software engineering to build production-grade ML applications. It is structured around the full lifecycle: data pipelines, modeling, experiment tracking, deployment, testing, monitoring, and iteration. The repository itself contains configuration, code examples, and links to accompanying lessons hosted on the Made With ML site, which provide detailed narrative explanations...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    Awesome Community Detection Research

    Awesome Community Detection Research

    A curated list of community detection research papers

    A collection of community detection papers. A curated list of community detection research papers with implementations. Similar collections about graph classification, classification/regression tree, fraud detection, and gradient boosting papers with implementations.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    CNN Explainer

    CNN Explainer

    Learning Convolutional Neural Networks with Interactive Visualization

    ...A convolutional neural network, or CNN for short, is a type of classifier, which excels at solving this problem! A CNN is a neural network: an algorithm used to recognize patterns in data. Neural Networks in general are composed of a collection of neurons that are organized in layers, each with their own learnable weights and biases. Let’s break down a CNN into its basic building blocks. A tensor can be thought of as an n-dimensional matrix. In the CNN above, tensors will be 3-dimensional with the exception of the output layer. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    StellarGraph

    StellarGraph

    Machine Learning on Graphs

    StellarGraph is a Python library for machine learning on graphs and networks. The StellarGraph library offers state-of-the-art algorithms for graph machine learning, making it easy to discover patterns and answer questions about graph-structured data. It can solve many machine learning tasks. Graph-structured data represent entities as nodes (or vertices) and relationships between them as edges (or links), and can include data associated with either as attributes. For example, a graph can contain people as nodes and friendships between them as links, with data like a person’s age and the date a friendship was established. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    Facets

    Facets

    Visualizations for machine learning datasets

    The power of machine learning comes from its ability to learn patterns from large amounts of data. Understanding your data is critical to building a powerful machine learning system. Facets contains two robust visualizations to aid in understanding and analyzing machine learning datasets. Get a sense of the shape of each feature of your dataset using Facets Overview, or explore individual observations using Facets Dive.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    JCLAL

    JCLAL

    A Java Class Library for Active Learning

    ...JCLAL framework is open source software and it is distributed under the GNU general public license. It is constructed with a high-level software environment, with a strong object oriented design and use of design patterns, which allow to the developers reuse, modify and extend the framework. If you want to refer to JCLAL in a publication, please cite the following JMLR paper. The full citation is: Oscar Reyes, Eduardo Pérez, María del Carmen Rodríguez-Hernández, Habib M. Fardoun, Sebastián Ventura. JCLAL: A Java Framework for Active Learning. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    ExSTraCS

    ExSTraCS

    Extended Supervised Tracking and Classifying System

    This advanced machine learning algorithm is a Michigan-style learning classifier system (LCS) developed to specialize in classification, prediction, data mining, and knowledge discovery tasks. Michigan-style LCS algorithms constitute a unique class of algorithms that distribute learned patterns over a collaborative population of of individually interpretable IF:THEN rules, allowing them to flexibly and effectively describe complex and diverse problem spaces. ExSTraCS was primarily developed to address problems in epidemiological data mining to identify complex patterns relating predictive attributes in noisy datasets to disease phenotypes of interest. ...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 17

    ANNFiD

    A forensic file identification tool using neural networks

    Just carved a bunch of bytes and have no idea what they could be? Maybe ANNFiD can help. ANNFiD uses neural network to identify byte patterns. It can be trained and has a GUI to help in the process. The tool is still on a very early stage, but could improve exponentially with the help of the developer community
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18

    bnns

    Research tool for interactive training of artificial neural networks.

    BNNS is a research tool for interactive training of artificial neural networks based on the Response Function Plots visualization method. It enables users to simulate, visualize and interact in the learning process of a Multi-Layer Perceptron on tasks which have a 2D character. Tasks like the famous two-spirals task or classification of satellite image data.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    TreeLiker

    TreeLiker

    TreeLiker is a collection of fast algorithms for working with complex

    ...The data can, for example, describe large organic molecules such as proteins or groups of individuals such as social networks or predator-prey networks etc. The algorithms included in TreeLiker are unique in that, in principle, they are able to search given sets of relational patterns exhaustively, thus guaranteeing that if some good pattern capturing an important feature of the problem exists, it will be found. In experiments with real-life data, the algorithms were shown to be able to construct complete non-redundant sets of patterns for chemical datasets involving several thousands of molecules as well as for comparably large datasets from genomics or proteomics. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20

    Black Hole Cortex

    Sphere surface layers of visual cortex approach maximum info density

    Near the surface (even horizon) of a black hole, there is maximum information density in units of squared plancks (and some translation to qubits). Similarly, our imagination is the set of all possible things we can draw onto our most dense layer of visual cortex in electricity patterns. Bigger layers have more neurons to handle those possibilities. A Black Hole Cortex is a kind of visual cortex that has density of neuron layers similar to density at various radius from a black hole. What we think our eyes see, the imagination, is the densest and smallest layer. SphereSurfaces outside it recursively have more neurons, more surface area, but less density since it has to eventually dimension-reduce to high level ideas, like there are 10000 Wikipedia page names that cover most parts of the world. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    Content Addressable Memory, Multi-Variate Statistics, Data Mining Includes analyzing datasets, extracting patterns, creating empirical expert system. Computes joint probabilities and implements a "belief" as the solution of an equilibrium equation
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    NeuroKiwi is the application of the Associative Model (AM, previously dubbed AMDroid), being a model storing relational change-detections. The application tries to emulate ground-up knowledge accumulation with limited or no prior knowledge of shapes or patterns.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    a distributed engine for abstract neural network development via natural-language programming
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next