Showing 26 open source projects for "matrix"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Cloud tools for web scraping and data extraction Icon
    Cloud tools for web scraping and data extraction

    Deploy pre-built tools that crawl websites, extract structured data, and feed your applications. Reliable web data without maintaining scrapers.

    Automate web data collection with cloud tools that handle anti-bot measures, browser rendering, and data transformation out of the box. Extract content from any website, push to vector databases for RAG workflows, or pipe directly into your apps via API. Schedule runs, set up webhooks, and connect to your existing stack. Free tier available, then scale as you need to.
    Explore 10,000+ tools
  • 1
    LRSLibrary

    LRSLibrary

    Low-Rank and Sparse Tools for Background Modeling and Subtraction

    LRSLibrary is a MATLAB library offering a broad collection of low-rank plus sparse decomposition algorithms, primarily aimed at background/foreground modeling from videos (background subtraction) and related computer vision tasks. Compatibility across MATLAB versions (tested in R2014–R2017) The library includes matrix and tensor methods (over 100 algorithms) and has been tested across MATLAB versions from R2014 onward. The algorithms can also be adapted to other computer vision or machine learning problems beyond video. Large algorithm collection: > 100 matrix- and tensor-based low-rank + sparse methods. Open-source license, documentation and references included.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    pycm

    pycm

    Multi-class confusion matrix library in Python

    PyCM is a multi-class confusion matrix library written in Python that supports both input data vectors and direct matrix, and a proper tool for post-classification model evaluation that supports most classes and overall statistics parameters. PyCM is the swiss-army knife of confusion matrices, targeted mainly at data scientists that need a broad array of metrics for predictive models and an accurate evaluation of large variety of classifiers.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    Intel Extension for PyTorch

    Intel Extension for PyTorch

    A Python package for extending the official PyTorch

    Intel® Extension for PyTorch* extends PyTorch* with up-to-date features optimizations for an extra performance boost on Intel hardware. Optimizations take advantage of Intel® Advanced Vector Extensions 512 (Intel® AVX-512) Vector Neural Network Instructions (VNNI) and Intel® Advanced Matrix Extensions (Intel® AMX) on Intel CPUs as well as Intel Xe Matrix Extensions (XMX) AI engines on Intel discrete GPUs. Moreover, Intel® Extension for PyTorch* provides easy GPU acceleration for Intel discrete GPUs through the PyTorch* xpu device.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    ml.js

    ml.js

    Machine learning tools in JavaScript

    ...If you are working with Node.js, you might prefer to add to your dependencies only the libraries that you need, as they are usually published to npm more often. We prefix all our npm package names with ml- (eg. ml-matrix) so they are easy to find.
    Downloads: 2 This Week
    Last Update:
    See Project
  • All-in-one security tool helps you prevent ransomware and breaches. Icon
    All-in-one security tool helps you prevent ransomware and breaches.

    SIEM + Detection and Response for IT Teams

    Blumira’s detection and response platform enables faster resolution of threats to help you stop ransomware attacks and prevent data breaches. We surface real threats, providing meaningful findings so you know what to prioritize. With our 3-step rapid response, you can automatically block known threats, use our playbooks for easy remediation, or contact our security team for additional guidance. Our responsive security team helps with onboarding, triage and ongoing consultations to continuously help your organization improve your security coverage.
    Learn More
  • 5
    PML

    PML

    The easiest way to use deep metric learning in your application

    ...Loss functions can be customized using distances, reducers, and regularizers. In the diagram below, a miner finds the indices of hard pairs within a batch. These are used to index into the distance matrix, computed by the distance object. For this diagram, the loss function is pair-based, so it computes a loss per pair.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 6
    CUTLASS

    CUTLASS

    CUDA Templates for Linear Algebra Subroutines

    CUTLASS is a collection of CUDA C++ template abstractions for implementing high-performance matrix-multiplication (GEMM) and related computations at all levels and scales within CUDA. It incorporates strategies for hierarchical decomposition and data movement similar to those used to implement cuBLAS and cuDNN. CUTLASS decomposes these "moving parts" into reusable, modular software components abstracted by C++ template classes.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 7
    TensorRT Backend For ONNX

    TensorRT Backend For ONNX

    ONNX-TensorRT: TensorRT backend for ONNX

    ...Building INetwork objects in full dimensions mode with dynamic shape support requires calling the C++ and Python API. Current supported ONNX operators are found in the operator support matrix. For building within docker, we recommend using and setting up the docker containers as instructed in the main (TensorRT repository). Note that this project has a dependency on CUDA. By default the build will look in /usr/local/cuda for the CUDA toolkit installation. If your CUDA path is different, overwrite the default path. ONNX models can be converted to serialized TensorRT engines using the onnx2trt executable.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    Armadillo

    Armadillo

    fast C++ library for linear algebra & scientific computing

    * Fast C++ library for linear algebra (matrix maths) and scientific computing * Easy to use functions and syntax, deliberately similar to Matlab / Octave * Uses template meta-programming techniques to increase efficiency * Provides user-friendly wrappers for OpenBLAS, Intel MKL, LAPACK, ATLAS, ARPACK, SuperLU and FFTW libraries * Useful for machine learning, pattern recognition, signal processing, bioinformatics, statistics, finance, etc
    Leader badge
    Downloads: 3,719 This Week
    Last Update:
    See Project
  • 9
    Bandicoot

    Bandicoot

    fast C++ library for GPU linear algebra & scientific computing

    * Fast GPU linear algebra library (matrix maths) for the C++ language, aiming towards a good balance between speed and ease of use * Provides high-level syntax and functionality deliberately similar to Matlab * Provides an API that is aiming to be compatible with Armadillo for easy transition between CPU and GPU linear algebra code * Useful for algorithm development directly in C++, or quick conversion of research code into production environments * Distributed under the permissive Apache 2.0 license, useful for both open-source and proprietary (closed-source) software * Can be used for machine learning, pattern recognition, computer vision, signal processing, bioinformatics, statistics, finance, etc * Downloads: http://coot.sourceforge.io/download.html * Documentation: http://coot.sourceforge.io/docs.html * Bug reports: http://coot.sourceforge.io/faq.html * Git repo: https://gitlab.com/conradsnicta/bandicoot-code
    Downloads: 7 This Week
    Last Update:
    See Project
  • Nonprofit Budgeting Software Icon
    Nonprofit Budgeting Software

    Martus Solutions provides seamless budgeting, reporting, and forecasting tools that integrate with accounting systems for real-time financial insights

    Martus' collaborative and easy-to-use budgeting and reporting platform will save you hundreds of hours each year. It's designed to make the entire budgeting process easier and create unlimited financial transparency.
    Learn More
  • 10
    Implicit

    Implicit

    Fast Python collaborative filtering for implicit feedback datasets

    This project provides fast Python implementations of several different popular recommendation algorithms for implicit feedback datasets. All models have multi-threaded training routines, using Cython and OpenMP to fit the models in parallel among all available CPU cores. In addition, the ALS and BPR models both have custom CUDA kernels - enabling fitting on compatible GPU’s. This library also supports using approximate nearest neighbour libraries such as Annoy, NMSLIB and Faiss for speeding...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    LightFM

    LightFM

    A Python implementation of LightFM, a hybrid recommendation algorithm

    ...It's easy to use, fast (via multithreaded model estimation), and produces high-quality results. It also makes it possible to incorporate both item and user metadata into the traditional matrix factorization algorithms. It represents each user and item as the sum of the latent representations of their features, thus allowing recommendations to generalize to new items (via item features) and to new users (via user features).
    Downloads: 7 This Week
    Last Update:
    See Project
  • 12
    MLPACK is a C++ machine learning library with emphasis on scalability, speed, and ease-of-use. Its aim is to make machine learning possible for novice users by means of a simple, consistent API, while simultaneously exploiting C++ language features to provide maximum performance and flexibility for expert users. * More info + downloads: https://mlpack.org * Git repo: https://github.com/mlpack/mlpack
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    Awesome Community Detection Research

    Awesome Community Detection Research

    A curated list of community detection research papers

    A collection of community detection papers. A curated list of community detection research papers with implementations. Similar collections about graph classification, classification/regression tree, fraud detection, and gradient boosting papers with implementations.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    CNN Explainer

    CNN Explainer

    Learning Convolutional Neural Networks with Interactive Visualization

    ...Neural Networks in general are composed of a collection of neurons that are organized in layers, each with their own learnable weights and biases. Let’s break down a CNN into its basic building blocks. A tensor can be thought of as an n-dimensional matrix. In the CNN above, tensors will be 3-dimensional with the exception of the output layer. A neuron can be thought of as a function that takes in multiple inputs and yields a single output. The outputs of neurons are represented above as the red → blue activation maps.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    Fuzzy Ecospace Modelling

    Fuzzy Ecospace Modelling

    FEM allows users to create fuzzy functional groups for use in ecology.

    Fuzzy Ecospace Modelling (FEM) is an R-based program for quantifying and comparing functional disparity, using a fuzzy set theory-based machine learning approach. FEM clusters n-dimensional matrices of functional traits (ecospace matrices – here called the Training Matrix) into functional groups and converts them into fuzzy functional groups using fuzzy discriminant analysis (Lin and Chen 2004 – see main text for more information). Following this, FEM classifies the functional entities from a second matrix (the Test Matrix) into the groups made using the Training Matrix, generating fuzzy membership values for each unit in the Test Matrix. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    Scikit-plot

    Scikit-plot

    An intuitive library to add plotting functionality to scikit-learn

    ...Scikit-plot is the result of an unartistic data scientist's dreadful realization that visualization is one of the most crucial components in the data science process, not just a mere afterthought. Gaining insights is simply a lot easier when you're looking at a colored heatmap of a confusion matrix complete with class labels rather than a single-line dump of numbers enclosed in brackets. Besides, if you ever need to present your results to someone (virtually any time anybody hires you to do data science), you show them visualizations, not a bunch of numbers in Excel. That said, there are a number of visualizations that frequently pop up in machine learning. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    GPU Machine Learning Library. This library aims to provide machine learning researchers and practitioners with a high performance library by taking advantage of the GPU enormous computational power. The library is developed in C++ and CUDA.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    Swift AI

    Swift AI

    The Swift machine learning library

    ...We recommend that you read the docs carefully for detailed instructions on using the various components of Swift AI. The example projects are another great resource for seeing real-world usage of these tools. Swift AI currently depends on Apple's Accelerate framework for vector/matrix calculations and digital signal processing.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    mctc4bmi

    mctc4bmi

    Matrix and Tensor Completion for Background Model Initialization

    MCTC4BMI (Multimodal Compressed Sensing and Tensor Decomposition for Brain-Machine Interfaces) is a MATLAB toolbox designed to process and analyze EEG data. It applies compressed sensing and tensor decomposition techniques to improve brain-machine interface (BMI) performance.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    node-opencv

    node-opencv

    OpenCV Bindings for node.js

    OpenCV bindings for Node.js. OpenCV is the defacto computer vision library - by interfacing with it natively in node, we get powerful real time vision in js. People are using node-opencv to fly control quadrocoptors, detect faces from webcam images and annotate video streams. If you're using it for something cool, I'd love to hear about it! You'll need OpenCV 2.3.1 or newer installed before installing node-opencv. You can use opencv to read in image files. Supported formats are in the OpenCV...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    Mass-based dissimilarity

    Mass-based dissimilarity

    A data dependent dissimilarity measure based on mass estimation.

    This software calculates the mass-based dissimilarity matrix for data mining algorithms relying on a distance measure. References: Overcoming Key Weaknesses of Distance-based Neighbourhood Methods using a Data Dependent Dissimilarity Measure. KDD 2016 http://dx.doi.org/10.1145/2939672.2939779 The source code, presentation slide and poster are attached under "Files". The presentation video in KDD 2016 is published on https://youtu.be/eotD_-SuEoo .
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22

    LAML:Linear Algebra and Machine Learning

    A stand-alone Java library for linear algebra and machine learning

    ...The reason why linear algebra and machine learning are built together is that full control of the basic data structures for matrices and vectors is required to have fast implementation for machine learning methods. Additionally, LAML provides a lot of commonly used matrix functions in the same signature to MATLAB, thus can also be used to manually convert MATLAB code to Java code.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23

    LightSpMV

    lightweight GPU-based sparse matrix-vector multiplication (SpMV)

    LightSpMV is a novel CUDA-compatible sparse matrix-vector multiplication (SpMv) algorithm using the standard compressed sparse row (CSR) storage format. We have evaluated LightSpMV using various sparse matrices and further compared it to the CSR-based SpMV subprograms in the state-of-the-art CUSP and cuSPARSE. Performance evaluation reveals that on a single Tesla K40c GPU, LightSpMV is superior to both CUSP and cuSPARSE, with a speedup of up to 2.60 and 2.63 over CUSP, and up to 1.93 and 1.79 over cuSPARSE for single and double precision, respectively.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    Swarm Wars

    Swarm Wars

    Safety in numbers.

    ...This behavior is controlled by a genetically evolved neural net augmented with online back propagation learning. The back propagation learning uses a reward vector and plasticity matrix that is evolved as part of the genome. Long story short, the AI is pretty frickin' sophisticated. Players can take control of organisms, trade resources and organisms in a market, and aid evolution by selective breeding.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    HSSVM(Hyper-Sphere Support Vector Machines) is a software for solving multi-classification problem, implemented by Java.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • Next