Showing 76 open source projects for "input"

View related business solutions
  • Managed MySQL, PostgreSQL, and SQL Databases on Google Cloud Icon
    Managed MySQL, PostgreSQL, and SQL Databases on Google Cloud

    Get back to your application and leave the database to us. Cloud SQL automatically handles backups, replication, and scaling.

    Cloud SQL is a fully managed relational database for MySQL, PostgreSQL, and SQL Server. We handle patching, backups, replication, encryption, and failover—so you can focus on your app. Migrate from on-prem or other clouds with free Database Migration Service. IDC found customers achieved 246% ROI. New customers get $300 in credits plus a 30-day free trial.
    Try Cloud SQL Free
  • Deploy Apps in Seconds with Cloud Run Icon
    Deploy Apps in Seconds with Cloud Run

    Host and run your applications without the need to manage infrastructure. Scales up from and down to zero automatically.

    Cloud Run is the fastest way to deploy containerized apps. Push your code in Go, Python, Node.js, Java, or any language and Cloud Run builds and deploys it automatically. Get fast autoscaling, pay only when your code runs, and skip the infrastructure headaches. Two million requests free per month. And new customers get $300 in free credit.
    Try Cloud Run Free
  • 1
    ChatterBot

    ChatterBot

    Machine learning, conversational dialog engine for creating chat bots

    ...An untrained instance of ChatterBot starts off with no knowledge of how to communicate. Each time a user enters a statement, the library saves the text that they entered and the text that the statement was in response to. As ChatterBot receives more input the number of responses that it can reply increase.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 2
    Audiomentations

    Audiomentations

    A Python library for audio data augmentation

    ...Useful if your original sound is clean and you want to simulate an environment where background noise is present. A folder of (background noise) sounds to be mixed in must be specified. These sounds should ideally be at least as long as the input sounds to be transformed. Otherwise, the background sound will be repeated, which may sound unnatural. Note that the gain of the added noise is relative to the amount of signal in the input. This implies that if the input is completely silent, no noise will be added.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 3
    TensorFlow

    TensorFlow

    TensorFlow is an open source library for machine learning

    ...The platform can be easily deployed on multiple CPUs, GPUs and Google's proprietary chip, the tensor processing unit (TPU). TensorFlow expresses its computations as dataflow graphs, with each node in the graph representing an operation. Nodes take tensors—multidimensional arrays—as input and produce tensors as output. The framework allows for these algorithms to be run in C++ for better performance, while the multiple levels of APIs let the user determine how high or low they wish the level of abstraction to be in the models produced. Tensorflow can also be used for research and production with TensorFlow Extended.
    Downloads: 14 This Week
    Last Update:
    See Project
  • 4
    Bytewax

    Bytewax

    Python Stream Processing

    ...You can use Bytewax for a variety of workloads from moving data à la Kafka Connect style all the way to advanced online machine learning workloads. Bytewax is not limited to streaming applications but excels anywhere that data can be distributed at the input and output.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Cut Cloud Costs with Google Compute Engine Icon
    Cut Cloud Costs with Google Compute Engine

    Save up to 91% with Spot VMs and get automatic sustained-use discounts. One free VM per month, plus $300 in credits.

    Save on compute costs with Compute Engine. Reduce your batch jobs and workload bill 60-91% with Spot VMs. Compute Engine's committed use offers customers up to 70% savings through sustained use discounts. Plus, you get one free e2-micro VM monthly and $300 credit to start.
    Try Compute Engine
  • 5
    gensim

    gensim

    Topic Modelling for Humans

    Gensim is a Python library for topic modeling, document indexing, and similarity retrieval with large corpora. The target audience is the natural language processing (NLP) and information retrieval (IR) community.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    Weights and Biases

    Weights and Biases

    Tool for visualizing and tracking your machine learning experiments

    ...Capture dataset versions with W&B Artifacts to identify how changing data affects your resulting models. Reproduce any model, with saved code, hyperparameters, launch commands, input data, and resulting model weights. Set wandb.config once at the beginning of your script to save your hyperparameters, input settings (like dataset name or model type), and any other independent variables for your experiments. This is useful for analyzing your experiments and reproducing your work in the future. Setting configs also allows you to visualize the relationships between features of your model architecture or data pipeline and model performance.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 7
    Vowpal Wabbit

    Vowpal Wabbit

    Machine learning system which pushes the frontier of machine learning

    ...There is a specific focus on reinforcement learning with several contextual bandit algorithms implemented and the online nature lending to the problem well. Vowpal Wabbit is a destination for implementing and maturing state-of-the-art algorithms with performance in mind. The input format for the learning algorithm is substantially more flexible than might be expected. Examples can have features consisting of free-form text, which is interpreted in a bag-of-words way. There can even be multiple sets of free-form text in different namespaces. Similar to the few other online algorithm implementations out there. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 8

    LightGBM

    Gradient boosting framework based on decision tree algorithms

    LightGBM or Light Gradient Boosting Machine is a high-performance, open source gradient boosting framework based on decision tree algorithms. Compared to other boosting frameworks, LightGBM offers several advantages in terms of speed, efficiency and accuracy. Parallel experiments have shown that LightGBM can attain linear speed-up through multiple machines for training in specific settings, all while consuming less memory. LightGBM supports parallel and GPU learning, and can handle...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    x-transformers

    x-transformers

    A simple but complete full-attention transformer

    ...I have found that keeping the feedforwards and adding the memory key/values leads to even better performance. Proposes adding learned tokens, akin to CLS tokens, named memory tokens, that is passed through the attention layers alongside the input tokens. You can also use the l2 normalized embeddings proposed as part of fixnorm. I have found it leads to improved convergence when paired with small initialization (proposed by BlinkDL). The small initialization will be taken care of as long as l2norm_embed is set to True.
    Downloads: 5 This Week
    Last Update:
    See Project
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • 10
    Tiny CUDA Neural Networks

    Tiny CUDA Neural Networks

    Lightning fast C++/CUDA neural network framework

    ...Most notably, it contains a lightning-fast "fully fused" multi-layer perceptron (technical paper), a versatile multiresolution hash encoding (technical paper), as well as support for various other input encodings, losses, and optimizers. We provide a sample application where an image function (x,y) -> (R,G,B) is learned. The fully fused MLP component of this framework requires a very large amount of shared memory in its default configuration. It will likely only work on an RTX 3090, an RTX 2080 Ti, or high-end enterprise GPUs. Lower-end cards must reduce the n_neurons parameter or use the CutlassMLP (better compatibility but slower) instead. tiny-cuda-nn comes with a PyTorch extension that allows using the fast MLPs and input encodings from within a Python context. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    DeepSeed

    DeepSeed

    Deep learning optimization library making distributed training easy

    ...With just a single GPU, ZeRO-Offload of DeepSpeed can train models with over 10B parameters, 10x bigger than the state of arts, democratizing multi-billion-parameter model training such that many deep learning scientists can explore bigger and better models. Sparse attention of DeepSpeed powers an order-of-magnitude longer input sequence and obtains up to 6x faster execution comparing with dense transformers.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 12
    DataDrivenDiffEq.jl

    DataDrivenDiffEq.jl

    Data driven modeling and automated discovery of dynamical systems

    DataDrivenDiffEq.jl is a package for finding systems of equations automatically from a dataset. The methods in this package take in data and return the model which generated the data. A known model is not required as input. These methods can estimate equation-free and equation-based models for discrete, continuous differential equations or direct mappings.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    TensorFlow Datasets

    TensorFlow Datasets

    TFDS is a collection of datasets ready to use with TensorFlow,

    TensorFlow Datasets is a collection of datasets ready to use, with TensorFlow or other Python ML frameworks, such as Jax. All datasets are exposed as tf.data. Datasets , enabling easy-to-use and high-performance input pipelines. To get started see the guide and our list of datasets.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    pycm

    pycm

    Multi-class confusion matrix library in Python

    PyCM is a multi-class confusion matrix library written in Python that supports both input data vectors and direct matrix, and a proper tool for post-classification model evaluation that supports most classes and overall statistics parameters. PyCM is the swiss-army knife of confusion matrices, targeted mainly at data scientists that need a broad array of metrics for predictive models and an accurate evaluation of large variety of classifiers.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    TorchMetrics

    TorchMetrics

    Machine learning metrics for distributed, scalable PyTorch application

    ...Metric arithmetic. Similar to torch.nn, most metrics have both a module-based and a functional version. The functional versions are simple python functions that as input take torch.tensors and return the corresponding metric as a torch.tensor.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 16
    TFX

    TFX

    TFX is an end-to-end platform for deploying production ML pipelines

    ...Both the components themselves and the integrations with orchestration systems can be extended. TFX components interact with an ML Metadata backend that keeps a record of component runs, input and output artifacts, and runtime configuration. This metadata backend enables advanced functionality like experiment tracking or warm starting/resuming ML models from previous runs.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    MNE-Python

    MNE-Python

    Magnetoencephalography (MEG) and Electroencephalography EEG in Python

    ...MNE-Python is an open-source Python package for exploring, visualizing, and analyzing human neurophysiological data such as MEG, EEG, sEEG, ECoG, and more. It includes modules for data input/output, preprocessing, visualization, source estimation, time-frequency analysis, connectivity analysis, machine learning, statistics, and more.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    Pytorch-toolbelt

    Pytorch-toolbelt

    PyTorch extensions for fast R&D prototyping and Kaggle farming

    A pytorch-toolbelt is a Python library with a set of bells and whistles for PyTorch for fast R&D prototyping and Kaggle farming. Easy model building using flexible encoder-decoder architecture. Modules: CoordConv, SCSE, Hypercolumn, Depthwise separable convolution and more. GPU-friendly test-time augmentation TTA for segmentation and classification. GPU-friendly inference on huge (5000x5000) images. Every-day common routines (fix/restore random seed, filesystem utils, metrics). Losses:...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 19
    segment-geospatial

    segment-geospatial

    A Python package for segmenting geospatial data with the SAM

    The segment-geospatial package draws its inspiration from segment-anything-eo repository authored by Aliaksandr Hancharenka. To facilitate the use of the Segment Anything Model (SAM) for geospatial data, I have developed the segment-anything-py and segment-geospatial Python packages, which are now available on PyPI and conda-forge. My primary objective is to simplify the process of leveraging SAM for geospatial data analysis by enabling users to achieve this with minimal coding effort. I...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    AIMET

    AIMET

    AIMET is a library that provides advanced quantization and compression

    Qualcomm Innovation Center (QuIC) is at the forefront of enabling low-power inference at the edge through its pioneering model-efficiency research. QuIC has a mission to help migrate the ecosystem toward fixed-point inference. With this goal, QuIC presents the AI Model Efficiency Toolkit (AIMET) - a library that provides advanced quantization and compression techniques for trained neural network models. AIMET enables neural networks to run more efficiently on fixed-point AI hardware...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 21
    Deepchecks

    Deepchecks

    Test Suites for validating ML models & data

    ...While you’re in the research phase, and want to validate your data, find potential methodological problems, and/or validate your model and evaluate it. To run a specific single check, all you need to do is import it and then to run it with the required (check-dependent) input parameters. More details about the existing checks and the parameters they can receive can be found in our API Reference. An ordered collection of checks, that can have conditions added to them. The Suite enables displaying a concluding report for all of the Checks that ran.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    DALI

    DALI

    A GPU-accelerated library containing highly optimized building blocks

    ...DALI addresses the problem of the CPU bottleneck by offloading data preprocessing to the GPU. Additionally, DALI relies on its own execution engine, built to maximize the throughput of the input pipeline.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    Raster Vision

    Raster Vision

    Open source framework for deep learning satellite and aerial imagery

    ...Raster Vision allows engineers to quickly and repeatably configure pipelines that go through core components of a machine learning workflow: analyzing training data, creating training chips, training models, creating predictions, evaluating models, and bundling the model files and configuration for easy deployment. The input to a Raster Vision pipeline is a set of images and training data, optionally with Areas of Interest (AOIs) that describe where the images are labeled. The output of a Raster Vision pipeline is a model bundle that allows you to easily utilize models in various deployment scenarios.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    Sonnet

    Sonnet

    TensorFlow-based neural network library

    ...Sonnet’s programming model revolves around a single concept: modules. These modules can hold references to parameters, other modules and methods that apply some function on the user input. There are a number of predefined modules that already ship with Sonnet, making it quite powerful and yet simple at the same time. Users are also encouraged to build their own modules. Sonnet is designed to be extremely unopinionated about your use of modules. It is simple to understand, and offers clear and focused code.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    OpenNMT-tf

    OpenNMT-tf

    Neural machine translation and sequence learning using TensorFlow

    ...Models are described with code to allow training custom architectures and overriding default behavior. For example, the following instance defines a sequence-to-sequence model with 2 concatenated input features, a self-attentional encoder, and an attentional RNN decoder sharing its input and output embeddings. Sequence to sequence models can be trained with guided alignment and alignment information are returned as part of the translation API.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • 3
  • 4
  • Next
MongoDB Logo MongoDB
Gen AI apps are built with MongoDB Atlas
Atlas offers built-in vector search and global availability across 125+ regions. Start building AI apps faster, all in one place.
Try Free →