Showing 451 open source projects for "data"

View related business solutions
  • Easily Host LLMs and Web Apps on Cloud Run Icon
    Easily Host LLMs and Web Apps on Cloud Run

    Run everything from popular models with on-demand NVIDIA L4 GPUs to web apps without infrastructure management.

    Run frontend and backend services, batch jobs, host LLMs, and queue processing workloads without the need to manage infrastructure. Cloud Run gives you on-demand GPU access for hosting LLMs and running real-time AI—with 5-second cold starts and automatic scale-to-zero so you only pay for actual usage. New customers get $300 in free credit to start.
    Try Cloud Run Free
  • Build on Google Cloud with $300 in Free Credit Icon
    Build on Google Cloud with $300 in Free Credit

    New to Google Cloud? Get $300 in free credit to explore Compute Engine, BigQuery, Cloud Run, Vertex AI, and 150+ other products.

    Start your next project with $300 in free Google Cloud credit. Spin up VMs, run containers, query exabytes in BigQuery, or build AI apps with Vertex AI and Gemini. Once your credits are used, keep building with 20+ products with free monthly usage, including Compute Engine, Cloud Storage, GKE, and Cloud Run functions. Sign up to start building right away.
    Start Free Trial
  • 1
    scikit-learn

    scikit-learn

    Machine learning in Python

    scikit-learn is an open source Python module for machine learning built on NumPy, SciPy and matplotlib. It offers simple and efficient tools for predictive data analysis and is reusable in various contexts.
    Downloads: 17 This Week
    Last Update:
    See Project
  • 2
    Diffgram

    Diffgram

    Training data (data labeling, annotation, workflow) for all data types

    From ingesting data to exploring it, annotating it, and managing workflows. Diffgram is a single application that will improve your data labeling and bring all aspects of training data under a single roof. Diffgram is world’s first truly open source training data platform that focuses on giving its users an unlimited experience. This is aimed to reduce your data labeling bills and increase your Training Data Quality.
    Downloads: 7 This Week
    Last Update:
    See Project
  • 3
    Label Studio

    Label Studio

    Label Studio is a multi-type data labeling and annotation tool

    ...Support for multiple data types including images, audio, text, HTML, time-series, and video.
    Downloads: 18 This Week
    Last Update:
    See Project
  • 4
    .NET for Apache Spark

    .NET for Apache Spark

    A free, open-source, and cross-platform big data analytics framework

    .NET for Apache Spark provides high-performance APIs for using Apache Spark from C# and F#. With these .NET APIs, you can access the most popular Dataframe and SparkSQL aspects of Apache Spark, for working with structured data, and Spark Structured Streaming, for working with streaming data. .NET for Apache Spark is compliant with .NET Standard - a formal specification of .NET APIs that are common across .NET implementations. This means you can use .NET for Apache Spark anywhere you write .NET code allowing you to reuse all the knowledge, skills, code, and libraries you already have as a .NET developer. .NET for Apache Spark runs on Windows, Linux, and macOS using .NET Core, or Windows using .NET Framework. ...
    Downloads: 6 This Week
    Last Update:
    See Project
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • 5
    FiftyOne

    FiftyOne

    The open-source tool for building high-quality datasets

    ...FiftyOne provides the building blocks for optimizing your dataset analysis pipeline. Use it to get hands-on with your data, including visualizing complex labels, evaluating your models, exploring scenarios of interest, identifying failure modes, finding annotation mistakes, and much more! Surveys show that machine learning engineers spend over half of their time wrangling data, but it doesn't have to be that way.
    Downloads: 9 This Week
    Last Update:
    See Project
  • 6
    Flyte
    Build production-grade data and ML workflows, hassle-free The infinitely scalable and flexible workflow orchestration platform that seamlessly unifies data, ML and analytics stacks. Don’t let friction between development and production slow down the deployment of new data/ML workflows and cause an increase in production bugs. Flyte enables rapid experimentation with production-grade software.
    Downloads: 8 This Week
    Last Update:
    See Project
  • 7
    marimo

    marimo

    A reactive notebook for Python

    ...Run one cell and marimo reacts by automatically running affected cells, eliminating the error-prone chore of managing the notebook state. marimo's reactive UI elements, like data frame GUIs and plots, make working with data feel refreshingly fast, futuristic, and intuitive. Version with git, run as Python scripts, import symbols from a notebook into other notebooks or Python files, and lint or format with your favorite tools. You'll always be able to reproduce your collaborators' results. Notebooks are executed in a deterministic order, with no hidden state, delete a cell and marimo deletes its variables while updating affected cells.
    Downloads: 6 This Week
    Last Update:
    See Project
  • 8
    AutoGluon

    AutoGluon

    AutoGluon: AutoML for Image, Text, and Tabular Data

    AutoGluon enables easy-to-use and easy-to-extend AutoML with a focus on automated stack ensembling, deep learning, and real-world applications spanning image, text, and tabular data. Intended for both ML beginners and experts, AutoGluon enables you to quickly prototype deep learning and classical ML solutions for your raw data with a few lines of code. Automatically utilize state-of-the-art techniques (where appropriate) without expert knowledge. Leverage automatic hyperparameter tuning, model selection/ensembling, architecture search, and data processing. ...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 9
    The Julia Programming Language

    The Julia Programming Language

    High-level, high-performance dynamic language for technical computing

    Julia is a fast, open source high-performance dynamic language for technical computing. It can be used for data visualization and plotting, deep learning, machine learning, scientific computing, parallel computing and so much more. Having a high level syntax, Julia is easy to use for programmers of every level and background. Julia has more than 2,800 community-registered packages including various mathematical libraries, data manipulation tools, and packages for general purpose computing. ...
    Downloads: 6 This Week
    Last Update:
    See Project
  • Cut Cloud Costs with Google Compute Engine Icon
    Cut Cloud Costs with Google Compute Engine

    Save up to 91% with Spot VMs and get automatic sustained-use discounts. One free VM per month, plus $300 in credits.

    Save on compute costs with Compute Engine. Reduce your batch jobs and workload bill 60-91% with Spot VMs. Compute Engine's committed use offers customers up to 70% savings through sustained use discounts. Plus, you get one free e2-micro VM monthly and $300 credit to start.
    Try Compute Engine
  • 10
    PySyft

    PySyft

    Data science on data without acquiring a copy

    ...Wherever your data wants to live in your ownership, the Syft ecosystem exists to help keep it there while allowing it to be used privately.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 11
    Pandas Profiling

    Pandas Profiling

    Create HTML profiling reports from pandas DataFrame objects

    pandas-profiling generates profile reports from a pandas DataFrame. The pandas df.describe() function is handy yet a little basic for exploratory data analysis. pandas-profiling extends pandas DataFrame with df.profile_report(), which automatically generates a standardized univariate and multivariate report for data understanding. High correlation warnings, based on different correlation metrics (Spearman, Pearson, Kendall, Cramér’s V, Phik). Most common categories (uppercase, lowercase, separator), scripts (Latin, Cyrillic) and blocks (ASCII, Cyrilic). ...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 12
    ROOT

    ROOT

    Analyzing, storing and visualizing big data, scientifically

    ROOT is a unified software package for the storage, processing, and analysis of scientific data: from its acquisition to the final visualization in the form of highly customizable, publication-ready plots. It is reliable, performant and well supported, easy to use and obtain, and strives to maximize the quantity and impact of scientific results obtained per unit cost, both of human effort and computing resources. ROOT provides a very efficient storage system for data models, that demonstrated to scale at the Large Hadron Collider experiments: Exabytes of scientific data are written in columnar ROOT format. ...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 13
    Arize Phoenix

    Arize Phoenix

    Uncover insights, surface problems, monitor, and fine tune your LLM

    Phoenix provides ML insights at lightning speed with zero-config observability for model drift, performance, and data quality. Phoenix is an Open Source ML Observability library designed for the Notebook. The toolset is designed to ingest model inference data for LLMs, CV, NLP and tabular datasets. It allows Data Scientists to quickly visualize their model data, monitor performance, track down issues & insights, and easily export to improve. Deep Learning Models (CV, LLM, and Generative) are an amazing technology that will power many of future ML use cases. ...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 14
    NannyML

    NannyML

    Detecting silent model failure. NannyML estimates performance

    NannyML is an open-source python library that allows you to estimate post-deployment model performance (without access to targets), detect data drift, and intelligently link data drift alerts back to changes in model performance. Built for data scientists, NannyML has an easy-to-use interface, and interactive visualizations, is completely model-agnostic, and currently supports all tabular classification use cases. NannyML closes the loop with performance monitoring and post deployment data science, empowering data scientist to quickly understand and automatically detect silent model failure. ...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 15
    Bytewax

    Bytewax

    Python Stream Processing

    ...You can use Bytewax for a variety of workloads from moving data à la Kafka Connect style all the way to advanced online machine learning workloads. Bytewax is not limited to streaming applications but excels anywhere that data can be distributed at the input and output.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 16
    RAGFlow

    RAGFlow

    RAGFlow is an open-source RAG (Retrieval-Augmented Generation) engine

    ...It offers a streamlined RAG workflow for businesses of any scale, combining LLM (Large Language Models) to provide truthful question-answering capabilities, backed by well-founded citations from various complex formatted data.
    Downloads: 6 This Week
    Last Update:
    See Project
  • 17
    DataFrame

    DataFrame

    C++ DataFrame for statistical, Financial, and ML analysis

    This is a C++ analytical library designed for data analysis similar to libraries in Python and R. For example, you would compare this to Pandas, R data.frame, or Polars. You can slice the data in many different ways. You can join, merge, and group-by the data. You can run various statistical, summarization, financial, and ML algorithms on the data. You can add your custom algorithms easily.
    Downloads: 6 This Week
    Last Update:
    See Project
  • 18
    Metaflow

    Metaflow

    A framework for real-life data science

    Metaflow is a human-friendly Python library that helps scientists and engineers build and manage real-life data science projects. Metaflow was originally developed at Netflix to boost productivity of data scientists who work on a wide variety of projects from classical statistics to state-of-the-art deep learning.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 19
    MindsDB

    MindsDB

    Making Enterprise Data Intelligent and Responsive for AI

    MindsDB is an AI data solution that enables humans, AI, agents, and applications to query data in natural language and SQL, and get highly accurate answers across disparate data sources and types. MindsDB connects to diverse data sources and applications, and unifies petabyte-scale structured and unstructured data. Powered by an industry-first cognitive engine that can operate anywhere (on-prem, VPC, serverless), it empowers both humans and AI with highly informed decision-making capabilities. ...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 20
    snorkel

    snorkel

    A system for quickly generating training data with weak supervision

    ...Snorkel Flow, an end-to-end machine learning platform for developing and deploying AI applications. Snorkel Flow incorporates many of the concepts of the Snorkel project with a range of newer techniques around weak supervision modeling, data augmentation, multi-task learning, data slicing and structuring.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 21
    SageMaker Training Toolkit

    SageMaker Training Toolkit

    Train machine learning models within Docker containers

    Train machine learning models within a Docker container using Amazon SageMaker. Amazon SageMaker is a fully managed service for data science and machine learning (ML) workflows. You can use Amazon SageMaker to simplify the process of building, training, and deploying ML models. To train a model, you can include your training script and dependencies in a Docker container that runs your training code. A container provides an effectively isolated environment, ensuring a consistent runtime and reliable training process. ...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 22
    dlib

    dlib

    Toolkit for making machine learning and data analysis applications

    Dlib is a modern C++ toolkit containing machine learning algorithms and tools for creating complex software in C++ to solve real world problems. It is used in both industry and academia in a wide range of domains including robotics, embedded devices, mobile phones, and large high performance computing environments. Dlib's open source licensing allows you to use it in any application, free of charge. Good unit test coverage, the ratio of unit test lines of code to library lines of code is...
    Downloads: 6 This Week
    Last Update:
    See Project
  • 23
    Spice.ai OSS

    Spice.ai OSS

    A self-hostable CDN for databases

    Spice is a portable runtime offering developers a unified SQL interface to materialize, accelerate, and query data from any database, data warehouse, or data lake. Spice connects, fuses, and delivers data to applications, machine-learning models, and AI backends, functioning as an application-specific, tier-optimized Database CDN. The Spice runtime, written in Rust, is built-with industry-leading technologies such as Apache DataFusion, Apache Arrow, Apache Arrow Flight, SQLite, and DuckDB. ...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 24
    Deepchecks

    Deepchecks

    Test Suites for validating ML models & data

    Deepchecks is the leading tool for testing and for validating your machine learning models and data, and it enables doing so with minimal effort. Deepchecks accompany you through various validation and testing needs such as verifying your data’s integrity, inspecting its distributions, validating data splits, evaluating your model and comparing between different models. While you’re in the research phase, and want to validate your data, find potential methodological problems, and/or validate your model and evaluate it. ...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 25
    Awesome Fraud Detection Research Papers

    Awesome Fraud Detection Research Papers

    A curated list of data mining papers about fraud detection

    A curated list of data mining papers about fraud detection from several conferences.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • 3
  • 4
  • 5
  • Next
MongoDB Logo MongoDB
Gen AI apps are built with MongoDB Atlas
Atlas offers built-in vector search and global availability across 125+ regions. Start building AI apps faster, all in one place.
Try Free →