Showing 184 open source projects for "python code generator"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • MongoDB Atlas runs apps anywhere Icon
    MongoDB Atlas runs apps anywhere

    Deploy in 115+ regions with the modern database for every enterprise.

    MongoDB Atlas gives you the freedom to build and run modern applications anywhere—across AWS, Azure, and Google Cloud. With global availability in over 115 regions, Atlas lets you deploy close to your users, meet compliance needs, and scale with confidence across any geography.
    Start Free
  • 1
    pyprobml

    pyprobml

    Python code for "Probabilistic Machine learning" book by Kevin Murphy

    Python 3 code to reproduce the figures in the books Probabilistic Machine Learning: An Introduction (aka "book 1") and Probabilistic Machine Learning: Advanced Topics (aka "book 2"). The code uses the standard Python libraries, such as numpy, scipy, matplotlib, sklearn, etc. Some of the code (especially in book 2) also uses JAX, and in some parts of book 1, we also use Tensorflow 2 and a little bit of Torch. See also probml-utils for some utility code that is shared across multiple notebooks.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    TensorFlowOnSpark

    TensorFlowOnSpark

    TensorFlowOnSpark brings TensorFlow programs to Apache Spark clusters

    By combining salient features from the TensorFlow deep learning framework with Apache Spark and Apache Hadoop, TensorFlowOnSpark enables distributed deep learning on a cluster of GPU and CPU servers. It enables both distributed TensorFlow training and inferencing on Spark clusters, with a goal to minimize the amount of code changes required to run existing TensorFlow programs on a shared grid.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    YOLOv3

    YOLOv3

    Object detection architectures and models pretrained on the COCO data

    Fast, precise and easy to train, YOLOv5 has a long and successful history of real time object detection. Treat YOLOv5 as a university where you'll feed your model information for it to learn from and grow into one integrated tool. You can get started with less than 6 lines of code. with YOLOv5 and its Pytorch implementation. Have a go using our API by uploading your own image and watch as YOLOv5 identifies objects using our pretrained models. Start training your model without being an expert...
    Downloads: 333 This Week
    Last Update:
    See Project
  • 4
    The fastai book

    The fastai book

    The fastai book, published as Jupyter Notebooks

    These notebooks cover an introduction to deep learning, fastai, and PyTorch. fastai is a layered API for deep learning; for more information, see the fastai paper. These notebooks are used for a MOOC and form the basis of this book, which is currently available for purchase. It does not have the same GPL restrictions that are on this repository. The code in the notebooks and python .py files is covered by the GPL v3 license; see the LICENSE file for details. The remainder (including all...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Build Securely on AWS with Proven Frameworks Icon
    Build Securely on AWS with Proven Frameworks

    Lay a foundation for success with Tested Reference Architectures developed by Fortinet’s experts. Learn more in this white paper.

    Moving to the cloud brings new challenges. How can you manage a larger attack surface while ensuring great network performance? Turn to Fortinet’s Tested Reference Architectures, blueprints for designing and securing cloud environments built by cybersecurity experts. Learn more and explore use cases in this white paper.
    Download Now
  • 5
    EasyNLP

    EasyNLP

    EasyNLP: A Comprehensive and Easy-to-use NLP Toolkit

    ..., and deployment for real-world applications. It has powered more than 10 BUs and more than 20 business scenarios within the Alibaba group. It is seamlessly integrated to Platform of AI (PAI) products, including PAI-DSW for development, PAI-DLC for cloud-native training, PAI-EAS for serving, and PAI-Designer for zero-code model training.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    LayoutParser

    LayoutParser

    A Unified Toolkit for Deep Learning Based Document Image Analysis

    With the help of state-of-the-art deep learning models, Layout Parser enables extracting complicated document structures using only several lines of code. This method is also more robust and generalizable as no sophisticated rules are involved in this process. A complete instruction for installing the main Layout Parser library and auxiliary components. Learn how to load DL Layout models and use them for layout detection. The full list of layout models currently available in Layout Parser...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    Machine Learning PyTorch Scikit-Learn

    Machine Learning PyTorch Scikit-Learn

    Code Repository for Machine Learning with PyTorch and Scikit-Learn

    Initially, this project started as the 4th edition of Python Machine Learning. However, after putting so much passion and hard work into the changes and new topics, we thought it deserved a new title. So, what’s new? There are many contents and additions, including the switch from TensorFlow to PyTorch, new chapters on graph neural networks and transformers, a new section on gradient boosting, and many more that I will detail in a separate blog post. For those who are interested in knowing what...
    Downloads: 7 This Week
    Last Update:
    See Project
  • 8
    AWS Step Functions Data Science SDK

    AWS Step Functions Data Science SDK

    For building machine learning (ML) workflows and pipelines on AWS

    The AWS Step Functions Data Science SDK is an open-source library that allows data scientists to easily create workflows that process and publish machine learning models using Amazon SageMaker and AWS Step Functions. You can create machine learning workflows in Python that orchestrate AWS infrastructure at scale, without having to provision and integrate the AWS services separately. The best way to quickly review how the AWS Step Functions Data Science SDK works is to review the related example...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    igel

    igel

    Machine learning tool that allows you to train and test models

    A delightful machine learning tool that allows you to train/fit, test, and use models without writing code. The goal of the project is to provide machine learning for everyone, both technical and non-technical users. I sometimes needed a tool sometimes, which I could use to fast create a machine learning prototype. Whether to build some proof of concept, create a fast draft model to prove a point or use auto ML. I find myself often stuck writing boilerplate code and thinking too much about...
    Downloads: 1 This Week
    Last Update:
    See Project
  • Auth for GenAI | Auth0 Icon
    Auth for GenAI | Auth0

    Enable AI agents to securely access tools, workflows, and data with fine-grained control and just a few lines of code.

    Easily implement secure login experiences for AI Agents - from interactive chatbots to background workers with Auth0. Auth for GenAI is now available in Developer Preview
    Try free now
  • 10
    DeeProtGO

    DeeProtGO

    DeeProtGO is a deep learning model for predicting GO terms of proteins

    This project contains the source code of DeeProtGO as well as an example of its use when predicting GO terms of the biological process sub-ontology for eukaryotic proteins.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    Trax

    Trax

    Deep learning with clear code and speed

    Trax is an end-to-end library for deep learning that focuses on clear code and speed. It is actively used and maintained in the Google Brain team. Run a pre-trained Transformer, create a translator in a few lines of code. Features and resources, API docs, where to talk to us, how to open an issue and more. Walkthrough, how Trax works, how to make new models and train on your own data. Trax includes basic models (like ResNet, LSTM, Transformer) and RL algorithms (like REINFORCE, A2C, PPO...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    Tez

    Tez

    Tez is a super-simple and lightweight Trainer for PyTorch

    Tez is a super-simple and lightweight Trainer for PyTorch. It also comes with many utils that you can use to tackle over 90% of deep learning projects in PyTorch. tez (तेज़ / تیز) means sharp, fast & active. This is a simple, to-the-point, library to make your PyTorch training easy. This library is in early-stage currently! So, there might be breaking changes. Currently, tez supports cpu, single gpu and multi-gpu & tpu training. More coming soon! Using tez is super-easy. We don't want you to...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    CleverHans

    CleverHans

    An adversarial example library for constructing attacks

    This repository contains the source code for CleverHans, a Python library to benchmark machine learning systems' vulnerability to adversarial examples. You can learn more about such vulnerabilities on the accompanying blog. The CleverHans library is under continual development, always welcoming contributions of the latest attacks and defenses. In particular, we always welcome help with resolving the issues currently open. Since v4.0.0, CleverHans supports 3 frameworks: JAX, PyTorch, and TF2. We...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    ML workspace

    ML workspace

    All-in-one web-based IDE specialized for machine learning

    All-in-one web-based development environment for machine learning. The ML workspace is an all-in-one web-based IDE specialized for machine learning and data science. It is simple to deploy and gets you started within minutes to productively built ML solutions on your own machines. This workspace is the ultimate tool for developers preloaded with a variety of popular data science libraries (e.g., Tensorflow, PyTorch, Keras, Sklearn) and dev tools (e.g., Jupyter, VS Code, Tensorboard) perfectly...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 15
    Kashgari

    Kashgari

    Kashgari is a production-level NLP Transfer learning framework

    Kashgari is a simple and powerful NLP Transfer learning framework, build a state-of-art model in 5 minutes for named entity recognition (NER), part-of-speech tagging (PoS), and text classification tasks.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    SRU

    SRU

    Training RNNs as Fast as CNNs

    ... achieves 5--9x speed-up over cuDNN-optimized LSTM on classification and question answering datasets, and delivers stronger results than LSTM and convolutional models. We also obtain an average of 0.7 BLEU improvement over the Transformer model on the translation by incorporating SRU into the architecture. The experimental code and SRU++ implementation are available on the dev branch which will be merged into master later.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    Machine Learning Collection

    Machine Learning Collection

    A resource for learning about Machine learning & Deep Learning

    A resource for learning about Machine learning & Deep Learning. In this repository, you will find tutorials and projects related to Machine Learning. I try to make the code as clear as possible, and the goal is be to used as a learning resource and a way to look up problems to solve specific problems. For most, I have also done video explanations on YouTube if you want a walkthrough for the code.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    Opyrator

    Opyrator

    Turns your machine learning code into microservices with web API

    Instantly turn your Python functions into production-ready microservices. Deploy and access your services via HTTP API or interactive UI. Seamlessly export your services into portable, shareable, and executable files or Docker images. Opyrator builds on open standards - OpenAPI, JSON Schema, and Python type hints - and is powered by FastAPI, Streamlit, and Pydantic. It cuts out all the pain for productizing and sharing your Python code - or anything you can wrap into a single Python function...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    Couler

    Couler

    Unified Interface for Constructing and Managing Workflows

    Couler is a system designed for unified machine learning workflow optimization in the cloud. Couler endeavors to provide a unified interface for constructing and optimizing workflows across various workflow engines, such as Argo Workflows, Tekton Pipelines, and Apache Airflow. Couler enhances workflow efficiency through features like Autonomous Workflow Construction, Automatic Artifact Caching Mechanisms, Big Workflow Auto Parallelism Optimization, and Automatic Hyperparameters Tuning.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    CapsGNN

    CapsGNN

    A PyTorch implementation of "Capsule Graph Neural Network"

    A PyTorch implementation of "Capsule Graph Neural Network" (ICLR 2019). The high-quality node embeddings learned from the Graph Neural Networks (GNNs) have been applied to a wide range of node-based applications and some of them have achieved state-of-the-art (SOTA) performance. However, when applying node embeddings learned from GNNs to generate graph embeddings, the scalar node representation may not suffice to preserve the node/graph properties efficiently, resulting in sub-optimal graph...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    Semantic Segmentation in PyTorch

    Semantic Segmentation in PyTorch

    Semantic segmentation models, datasets & losses implemented in PyTorch

    Semantic segmentation models, datasets and losses implemented in PyTorch. PyTorch and Torchvision needs to be installed before running the scripts, together with PIL and opencv for data-preprocessing and tqdm for showing the training progress. PyTorch v1.1 is supported (using the new supported tensoboard); can work with earlier versions, but instead of using tensoboard, use tensoboardX. Poly learning rate, where the learning rate is scaled down linearly from the starting value down to zero...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    Keepsake

    Keepsake

    Version control for machine learning

    Keepsake is a Python library that uploads files and metadata (like hyperparameters) to Amazon S3 or Google Cloud Storage. You can get the data back out using the command-line interface or a notebook.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    U-Net Fusion RFI

    U-Net Fusion RFI

    U-Net for RFI Detection based on @jakeret's implementation

    See original code here: https://github.com/jakeret/tf_unet Currently this project is based on Tensorflow 1.13 code base and there are no plans to transfer to TF version 2. The primary improvements to this code base include a training and evaluation framework, along with a fusion based approach to detection, combining a number of models (currently hard coded to two trained models) along with Sum Threshold as an additional "expert." Additional work is being done to add custom layers...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    BudgetML

    BudgetML

    Deploy a ML inference service on a budget in 10 lines of code

    Deploy a ML inference service on a budget in less than 10 lines of code. BudgetML is perfect for practitioners who would like to quickly deploy their models to an endpoint, but not waste a lot of time, money, and effort trying to figure out how to do this end-to-end. We built BudgetML because it's hard to find a simple way to get a model in production fast and cheaply. Deploying from scratch involves learning too many different concepts like SSL certificate generation, Docker, REST, Uvicorn...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    TensorLayer

    TensorLayer

    Deep learning and reinforcement learning library for scientists

    ... supports TensorFlow, MindSpore and PaddlePaddle (partial) as the backends, allowing users to run the code on different hardware like Nvidia-GPU and Huawei-Ascend. In the future, it will support TensorFlow, MindSpore, PaddlePaddle, PyTorch and other backends. TensorLayer has a high-level layer/model abstraction which is effortless to learn. You can learn how deep learning can benefit your AI tasks in minutes through the massive examples.
    Downloads: 0 This Week
    Last Update:
    See Project
Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.