Showing 183 open source projects for "python accounting source code"

View related business solutions
  • Resolve Support Tickets 2x Faster​ with ServoDesk Icon
    Resolve Support Tickets 2x Faster​ with ServoDesk

    Full access to Enterprise features. No credit card required.

    What if You Could Automate 90% of Your Repetitive Tasks in Under 30 Days? At ServoDesk, we help businesses like yours automate operations with AI, allowing you to cut service times in half and increase productivity by 25% - without hiring more staff.
    Try ServoDesk for free
  • Incredable is the first DLT-secured platform that allows you to save time, eliminate errors, and ensure your organization is compliant all in one place. Icon
    Incredable is the first DLT-secured platform that allows you to save time, eliminate errors, and ensure your organization is compliant all in one place.

    For healthcare Providers and Facilities

    Incredable streamlines and simplifies the complex process of medical credentialing for hospitals and medical facilities, helping you save valuable time, reduce costs, and minimize risks. With Incredable, you can effortlessly manage all your healthcare providers and their credentials within a single, unified platform. Our state-of-the-art technology ensures top-notch data security, giving you peace of mind.
    Learn More
  • 1
    Alphafold2

    Alphafold2

    Unofficial Pytorch implementation / replication of Alphafold2

    To eventually become an unofficial working Pytorch implementation of Alphafold2, the breathtaking attention network that solved CASP14. Will be gradually implemented as more details of the architecture is released. Once this is replicated, I intend to fold all available amino acid sequences out there in-silico and release it as an academic torrent, to further science. Deepmind has open sourced the official code in Jax, along with the weights! This repository will now be geared towards a...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    pyprobml

    pyprobml

    Python code for "Probabilistic Machine learning" book by Kevin Murphy

    Python 3 code to reproduce the figures in the books Probabilistic Machine Learning: An Introduction (aka "book 1") and Probabilistic Machine Learning: Advanced Topics (aka "book 2"). The code uses the standard Python libraries, such as numpy, scipy, matplotlib, sklearn, etc. Some of the code (especially in book 2) also uses JAX, and in some parts of book 1, we also use Tensorflow 2 and a little bit of Torch. See also probml-utils for some utility code that is shared across multiple notebooks.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    Catalyst

    Catalyst

    Accelerated deep learning R&D

    Catalyst is a PyTorch framework for accelerated Deep Learning research and development. It allows you to write compact but full-featured Deep Learning pipelines with just a few lines of code. With Catalyst you get a full set of features including a training loop with metrics, model checkpointing and more, all without the boilerplate. Catalyst is focused on reproducibility, rapid experimentation, and codebase reuse so you can break the cycle of writing another regular train loop and make...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    DeeProtGO

    DeeProtGO

    DeeProtGO is a deep learning model for predicting GO terms of proteins

    This project contains the source code of DeeProtGO as well as an example of its use when predicting GO terms of the biological process sub-ontology for eukaryotic proteins.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Collect! is a highly configurable debt collection software Icon
    Collect! is a highly configurable debt collection software

    Everything that matters to debt collection, all in one solution.

    The flexible & scalable debt collection software built to automate your workflow. From startup to enterprise, we have the solution for you.
    Learn More
  • 5
    TensorFlowOnSpark

    TensorFlowOnSpark

    TensorFlowOnSpark brings TensorFlow programs to Apache Spark clusters

    By combining salient features from the TensorFlow deep learning framework with Apache Spark and Apache Hadoop, TensorFlowOnSpark enables distributed deep learning on a cluster of GPU and CPU servers. It enables both distributed TensorFlow training and inferencing on Spark clusters, with a goal to minimize the amount of code changes required to run existing TensorFlow programs on a shared grid.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    EasyNLP

    EasyNLP

    EasyNLP: A Comprehensive and Easy-to-use NLP Toolkit

    EasyNLP is an easy-to-use NLP development and application toolkit in PyTorch, first released inside Alibaba in 2021. It is built with scalable distributed training strategies and supports a comprehensive suite of NLP algorithms for various NLP applications. EasyNLP integrates knowledge distillation and few-shot learning for landing large pre-trained models, together with various popular multi-modality pre-trained models. It provides a unified framework of model training, inference, and...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    LayoutParser

    LayoutParser

    A Unified Toolkit for Deep Learning Based Document Image Analysis

    With the help of state-of-the-art deep learning models, Layout Parser enables extracting complicated document structures using only several lines of code. This method is also more robust and generalizable as no sophisticated rules are involved in this process. A complete instruction for installing the main Layout Parser library and auxiliary components. Learn how to load DL Layout models and use them for layout detection. The full list of layout models currently available in Layout Parser....
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    YOLOv3

    YOLOv3

    Object detection architectures and models pretrained on the COCO data

    Fast, precise and easy to train, YOLOv5 has a long and successful history of real time object detection. Treat YOLOv5 as a university where you'll feed your model information for it to learn from and grow into one integrated tool. You can get started with less than 6 lines of code. with YOLOv5 and its Pytorch implementation. Have a go using our API by uploading your own image and watch as YOLOv5 identifies objects using our pretrained models. Start training your model without being an...
    Downloads: 155 This Week
    Last Update:
    See Project
  • 9
    Machine Learning PyTorch Scikit-Learn

    Machine Learning PyTorch Scikit-Learn

    Code Repository for Machine Learning with PyTorch and Scikit-Learn

    Initially, this project started as the 4th edition of Python Machine Learning. However, after putting so much passion and hard work into the changes and new topics, we thought it deserved a new title. So, what’s new? There are many contents and additions, including the switch from TensorFlow to PyTorch, new chapters on graph neural networks and transformers, a new section on gradient boosting, and many more that I will detail in a separate blog post. For those who are interested in knowing...
    Downloads: 5 This Week
    Last Update:
    See Project
  • Business Automation Software for SMBs Icon
    Business Automation Software for SMBs

    Fed up with not having the time, money and resources to grow your business?

    The only software you need to increase cash flow, optimize resource utilization, and take control of your assets and inventory.
    Learn More
  • 10
    AWS Step Functions Data Science SDK

    AWS Step Functions Data Science SDK

    For building machine learning (ML) workflows and pipelines on AWS

    The AWS Step Functions Data Science SDK is an open-source library that allows data scientists to easily create workflows that process and publish machine learning models using Amazon SageMaker and AWS Step Functions. You can create machine learning workflows in Python that orchestrate AWS infrastructure at scale, without having to provision and integrate the AWS services separately. The best way to quickly review how the AWS Step Functions Data Science SDK works is to review the related example notebooks. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    igel

    igel

    Machine learning tool that allows you to train and test models

    A delightful machine learning tool that allows you to train/fit, test, and use models without writing code. The goal of the project is to provide machine learning for everyone, both technical and non-technical users. I sometimes needed a tool sometimes, which I could use to fast create a machine learning prototype. Whether to build some proof of concept, create a fast draft model to prove a point or use auto ML. I find myself often stuck writing boilerplate code and thinking too much about...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    Trax

    Trax

    Deep learning with clear code and speed

    Trax is an end-to-end library for deep learning that focuses on clear code and speed. It is actively used and maintained in the Google Brain team. Run a pre-trained Transformer, create a translator in a few lines of code. Features and resources, API docs, where to talk to us, how to open an issue and more. Walkthrough, how Trax works, how to make new models and train on your own data. Trax includes basic models (like ResNet, LSTM, Transformer) and RL algorithms (like REINFORCE, A2C, PPO). It...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    Tez

    Tez

    Tez is a super-simple and lightweight Trainer for PyTorch

    Tez is a super-simple and lightweight Trainer for PyTorch. It also comes with many utils that you can use to tackle over 90% of deep learning projects in PyTorch. tez (तेज़ / تیز) means sharp, fast & active. This is a simple, to-the-point, library to make your PyTorch training easy. This library is in early-stage currently! So, there might be breaking changes. Currently, tez supports cpu, single gpu and multi-gpu & tpu training. More coming soon! Using tez is super-easy. We don't want you to...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    CleverHans

    CleverHans

    An adversarial example library for constructing attacks

    This repository contains the source code for CleverHans, a Python library to benchmark machine learning systems' vulnerability to adversarial examples. You can learn more about such vulnerabilities on the accompanying blog. The CleverHans library is under continual development, always welcoming contributions of the latest attacks and defenses. In particular, we always welcome help with resolving the issues currently open.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    U-Net Fusion RFI

    U-Net Fusion RFI

    U-Net for RFI Detection based on @jakeret's implementation

    See original code here: https://github.com/jakeret/tf_unet Currently this project is based on Tensorflow 1.13 code base and there are no plans to transfer to TF version 2. The primary improvements to this code base include a training and evaluation framework, along with a fusion based approach to detection, combining a number of models (currently hard coded to two trained models) along with Sum Threshold as an additional "expert." Additional work is being done to add custom layers to...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    ML workspace

    ML workspace

    All-in-one web-based IDE specialized for machine learning

    All-in-one web-based development environment for machine learning. The ML workspace is an all-in-one web-based IDE specialized for machine learning and data science. It is simple to deploy and gets you started within minutes to productively built ML solutions on your own machines. This workspace is the ultimate tool for developers preloaded with a variety of popular data science libraries (e.g., Tensorflow, PyTorch, Keras, Sklearn) and dev tools (e.g., Jupyter, VS Code, Tensorboard)...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    Kashgari

    Kashgari

    Kashgari is a production-level NLP Transfer learning framework

    Kashgari is a simple and powerful NLP Transfer learning framework, build a state-of-art model in 5 minutes for named entity recognition (NER), part-of-speech tagging (PoS), and text classification tasks.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    Machine Learning Collection

    Machine Learning Collection

    A resource for learning about Machine learning & Deep Learning

    A resource for learning about Machine learning & Deep Learning. In this repository, you will find tutorials and projects related to Machine Learning. I try to make the code as clear as possible, and the goal is be to used as a learning resource and a way to look up problems to solve specific problems. For most, I have also done video explanations on YouTube if you want a walkthrough for the code.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    SRU

    SRU

    Training RNNs as Fast as CNNs

    Common recurrent neural architectures scale poorly due to the intrinsic difficulty in parallelizing their state computations. In this work, we propose the Simple Recurrent Unit (SRU), a light recurrent unit that balances model capacity and scalability. SRU is designed to provide expressive recurrence, enable highly parallelized implementation, and comes with careful initialization to facilitate the training of deep models. We demonstrate the effectiveness of SRU on multiple NLP tasks. SRU...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    Opyrator

    Opyrator

    Turns your machine learning code into microservices with web API

    Instantly turn your Python functions into production-ready microservices. Deploy and access your services via HTTP API or interactive UI. Seamlessly export your services into portable, shareable, and executable files or Docker images. Opyrator builds on open standards - OpenAPI, JSON Schema, and Python type hints - and is powered by FastAPI, Streamlit, and Pydantic. It cuts out all the pain for productizing and sharing your Python code - or anything you can wrap into a single Python...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    Couler

    Couler

    Unified Interface for Constructing and Managing Workflows

    Couler is a system designed for unified machine learning workflow optimization in the cloud. Couler endeavors to provide a unified interface for constructing and optimizing workflows across various workflow engines, such as Argo Workflows, Tekton Pipelines, and Apache Airflow. Couler enhances workflow efficiency through features like Autonomous Workflow Construction, Automatic Artifact Caching Mechanisms, Big Workflow Auto Parallelism Optimization, and Automatic Hyperparameters Tuning.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    CapsGNN

    CapsGNN

    A PyTorch implementation of "Capsule Graph Neural Network"

    A PyTorch implementation of "Capsule Graph Neural Network" (ICLR 2019). The high-quality node embeddings learned from the Graph Neural Networks (GNNs) have been applied to a wide range of node-based applications and some of them have achieved state-of-the-art (SOTA) performance. However, when applying node embeddings learned from GNNs to generate graph embeddings, the scalar node representation may not suffice to preserve the node/graph properties efficiently, resulting in sub-optimal graph...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    Keepsake

    Keepsake

    Version control for machine learning

    Keepsake is a Python library that uploads files and metadata (like hyperparameters) to Amazon S3 or Google Cloud Storage. You can get the data back out using the command-line interface or a notebook.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    Semantic Segmentation in PyTorch

    Semantic Segmentation in PyTorch

    Semantic segmentation models, datasets & losses implemented in PyTorch

    Semantic segmentation models, datasets and losses implemented in PyTorch. PyTorch and Torchvision needs to be installed before running the scripts, together with PIL and opencv for data-preprocessing and tqdm for showing the training progress. PyTorch v1.1 is supported (using the new supported tensoboard); can work with earlier versions, but instead of using tensoboard, use tensoboardX. Poly learning rate, where the learning rate is scaled down linearly from the starting value down to zero...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    BudgetML

    BudgetML

    Deploy a ML inference service on a budget in 10 lines of code

    Deploy a ML inference service on a budget in less than 10 lines of code. BudgetML is perfect for practitioners who would like to quickly deploy their models to an endpoint, but not waste a lot of time, money, and effort trying to figure out how to do this end-to-end. We built BudgetML because it's hard to find a simple way to get a model in production fast and cheaply. Deploying from scratch involves learning too many different concepts like SSL certificate generation, Docker, REST,...
    Downloads: 0 This Week
    Last Update:
    See Project