Showing 1159 open source projects for "artificial intelligence algorithm"

View related business solutions
  • Keep company data safe with Chrome Enterprise Icon
    Keep company data safe with Chrome Enterprise

    Protect your business with AI policies and data loss prevention in the browser

    Make AI work your way with Chrome Enterprise. Block unapproved sites and set custom data controls that align with your company's policies.
    Download Chrome
  • MongoDB Atlas runs apps anywhere Icon
    MongoDB Atlas runs apps anywhere

    Deploy in 115+ regions with the modern database for every enterprise.

    MongoDB Atlas gives you the freedom to build and run modern applications anywhere—across AWS, Azure, and Google Cloud. With global availability in over 115 regions, Atlas lets you deploy close to your users, meet compliance needs, and scale with confidence across any geography.
    Start Free
  • 1
    GROBID

    GROBID

    A machine learning software for extracting information

    GROBID is a machine learning library for extracting, parsing, and re-structuring raw documents such as PDF into structured XML/TEI encoded documents with a particular focus on technical and scientific publications. First developments started in 2008 as a hobby. In 2011 the tool has been made available in open source. Work on GROBID has been steady as a side project since the beginning and is expected to continue as such. Header extraction and parsing from article in PDF format. The...
    Downloads: 6 This Week
    Last Update:
    See Project
  • 2
    Thinc

    Thinc

    A refreshing functional take on deep learning

    Thinc is a lightweight deep learning library that offers an elegant, type-checked, functional-programming API for composing models, with support for layers defined in other frameworks such as PyTorch, TensorFlow and MXNet. You can use Thinc as an interface layer, a standalone toolkit or a flexible way to develop new models. Previous versions of Thinc have been running quietly in production in thousands of companies, via both spaCy and Prodigy. We wrote the new version to let users compose,...
    Downloads: 6 This Week
    Last Update:
    See Project
  • 3
    MONAI

    MONAI

    AI Toolkit for Healthcare Imaging

    The MONAI framework is the open-source foundation being created by Project MONAI. MONAI is a freely available, community-supported, PyTorch-based framework for deep learning in healthcare imaging. It provides domain-optimized foundational capabilities for developing healthcare imaging training workflows in a native PyTorch paradigm. Project MONAI also includes MONAI Label, an intelligent open source image labeling and learning tool that helps researchers and clinicians collaborate, create...
    Downloads: 6 This Week
    Last Update:
    See Project
  • 4
    BentoML

    BentoML

    Unified Model Serving Framework

    BentoML simplifies ML model deployment and serves your models at a production scale. Support multiple ML frameworks natively: Tensorflow, PyTorch, XGBoost, Scikit-Learn and many more! Define custom serving pipeline with pre-processing, post-processing and ensemble models. Standard .bento format for packaging code, models and dependencies for easy versioning and deployment. Integrate with any training pipeline or ML experimentation platform. Parallelize compute-intense model inference...
    Downloads: 6 This Week
    Last Update:
    See Project
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • 5
    Synapse Machine Learning

    Synapse Machine Learning

    Simple and distributed Machine Learning

    SynapseML (previously MMLSpark) is an open source library to simplify the creation of scalable machine learning pipelines. SynapseML builds on Apache Spark and SparkML to enable new kinds of machine learning, analytics, and model deployment workflows. SynapseML adds many deep learning and data science tools to the Spark ecosystem, including seamless integration of Spark Machine Learning pipelines with the Open Neural Network Exchange (ONNX), LightGBM, The Cognitive Services, Vowpal Wabbit,...
    Downloads: 6 This Week
    Last Update:
    See Project
  • 6
    OpenVINO Training Extensions

    OpenVINO Training Extensions

    Trainable models and NN optimization tools

    OpenVINO™ Training Extensions provide a convenient environment to train Deep Learning models and convert them using the OpenVINO™ toolkit for optimized inference. When ote_cli is installed in the virtual environment, you can use the ote command line interface to perform various actions for templates related to the chosen task type, such as running, training, evaluating, exporting, etc. ote train trains a model (a particular model template) on a dataset and saves results in two files. ote...
    Downloads: 5 This Week
    Last Update:
    See Project
  • 7
    caret

    caret

    caret (Classification And Regression Training) R package

    The caret (Classification And Regression Training) R package streamlines the process of building predictive machine learning models. It provides uniform interfaces for model training, tuning, evaluation, preprocessing, and variable importance. With support for over 200 models, caret is foundational for R workflows in modeling and machine learning.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 8
    NGBoost

    NGBoost

    Natural Gradient Boosting for Probabilistic Prediction

    ngboost is a Python library that implements Natural Gradient Boosting, as described in "NGBoost: Natural Gradient Boosting for Probabilistic Prediction". It is built on top of Scikit-Learn and is designed to be scalable and modular with respect to the choice of proper scoring rule, distribution, and base learner. A didactic introduction to the methodology underlying NGBoost is available in this slide deck.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 9
    The Unsplash Dataset

    The Unsplash Dataset

    Unsplash images made available for research and machine learning

    The Unsplash Dataset is made up of over 350,000+ contributing global photographers and data sourced from hundreds of millions of searches across a nearly unlimited number of uses and contexts. Due to the breadth of intent and semantics contained within the Unsplash dataset, it enables new opportunities for research and learning.
    Downloads: 4 This Week
    Last Update:
    See Project
  • No-Nonsense Code-to-Cloud Security for Devs | Aikido Icon
    No-Nonsense Code-to-Cloud Security for Devs | Aikido

    Connect your GitHub, GitLab, Bitbucket, or Azure DevOps account to start scanning your repos for free.

    Aikido provides a unified security platform for developers, combining 12 powerful scans like SAST, DAST, and CSPM. AI-driven AutoFix and AutoTriage streamline vulnerability management, while runtime protection blocks attacks.
    Start for Free
  • 10
    Nixtla

    Nixtla

    Fast forecasting with statistical and econometric models

    StatsForecast offers a collection of widely used univariate time series forecasting models, including automatic ARIMA, ETS, CES, and Theta modeling optimized for high performance using numba. It also includes a large battery of benchmarking models. Lightning-fast forecasting with statistical and econometric models.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 11
    DiffEqFlux.jl

    DiffEqFlux.jl

    Pre-built implicit layer architectures with O(1) backprop, GPUs

    DiffEqFlux.jl is a Julia library that combines differential equations with neural networks, enabling the creation of neural differential equations (neural ODEs), universal differential equations, and physics-informed learning models. It serves as a bridge between the DifferentialEquations.jl and Flux.jl libraries, allowing for end-to-end differentiable simulations and model training in scientific machine learning. DiffEqFlux.jl is widely used for modeling dynamical systems with learnable...
    Downloads: 5 This Week
    Last Update:
    See Project
  • 12
    BindsNET

    BindsNET

    Simulation of spiking neural networks (SNNs) using PyTorch

    A Python package used for simulating spiking neural networks (SNNs) on CPUs or GPUs using PyTorch Tensor functionality. BindsNET is a spiking neural network simulation library geared towards the development of biologically inspired algorithms for machine learning. This package is used as part of ongoing research on applying SNNs to machine learning (ML) and reinforcement learning (RL) problems in the Biologically Inspired Neural & Dynamical Systems (BINDS) lab.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 13
    Shapash

    Shapash

    Explainability and Interpretability to Develop Reliable ML models

    Shapash is a Python library dedicated to the interpretability of Data Science models. It provides several types of visualization that display explicit labels that everyone can understand. Data Scientists can more easily understand their models, share their results and easily document their projects in an HTML report. End users can understand the suggestion proposed by a model using a summary of the most influential criteria.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 14
    pomegranate

    pomegranate

    Fast, flexible and easy to use probabilistic modelling in Python

    pomegranate is a library for probabilistic modeling defined by its modular implementation and treatment of all models as the probability distributions they are. The modular implementation allows one to easily drop normal distributions into a mixture model to create a Gaussian mixture model just as easily as dropping a gamma and a Poisson distribution into a mixture model to create a heterogeneous mixture. But that's not all! Because each model is treated as a probability distribution,...
    Downloads: 5 This Week
    Last Update:
    See Project
  • 15
    Learning Interpretability Tool

    Learning Interpretability Tool

    Interactively analyze ML models to understand their behavior

    The Learning Interpretability Tool (LIT, formerly known as the Language Interpretability Tool) is a visual, interactive ML model-understanding tool that supports text, image, and tabular data. It can be run as a standalone server, or inside of notebook environments such as Colab, Jupyter, and Google Cloud Vertex AI notebooks.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 16
    cuML

    cuML

    RAPIDS Machine Learning Library

    cuML is a suite of libraries that implement machine learning algorithms and mathematical primitives functions that share compatible APIs with other RAPIDS projects. cuML enables data scientists, researchers, and software engineers to run traditional tabular ML tasks on GPUs without going into the details of CUDA programming. In most cases, cuML's Python API matches the API from scikit-learn. For large datasets, these GPU-based implementations can complete 10-50x faster than their CPU...
    Downloads: 5 This Week
    Last Update:
    See Project
  • 17
    gensim

    gensim

    Topic Modelling for Humans

    Gensim is a Python library for topic modeling, document indexing, and similarity retrieval with large corpora. The target audience is the natural language processing (NLP) and information retrieval (IR) community.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 18
    MLRun

    MLRun

    Machine Learning automation and tracking

    MLRun is an open MLOps framework for quickly building and managing continuous ML and generative AI applications across their lifecycle. MLRun integrates into your development and CI/CD environment and automates the delivery of production data, ML pipelines, and online applications, significantly reducing engineering efforts, time to production, and computation resources. MLRun breaks the silos between data, ML, software, and DevOps/MLOps teams, enabling collaboration and fast continuous...
    Downloads: 5 This Week
    Last Update:
    See Project
  • 19
    Qlib

    Qlib

    Qlib is an AI-oriented quantitative investment platform

    Qlib is an AI-oriented quantitative investment platform, which aims to realize the potential, empower the research, and create the value of AI technologies in quantitative investment. With Qlib, you can easily try your ideas to create better Quant investment strategies. An increasing number of SOTA Quant research works/papers are released in Qlib. With Qlib, users can easily try their ideas to create better Quant investment strategies. At the module level, Qlib is a platform that consists of...
    Downloads: 5 This Week
    Last Update:
    See Project
  • 20
    Kubeflow

    Kubeflow

    Machine Learning Toolkit for Kubernetes

    Kubeflow is an open source Cloud Native machine learning platform based on Google’s internal machine learning pipelines. It seeks to make deployments of machine learning workflows on Kubernetes simple, portable and scalable. With Kubeflow you can deploy best-of-breed open-source systems for ML to diverse infrastructures. You can also take advantage of a number of great features, such as services for managing Jupyter notebooks and support for a TensorFlow Serving container. Wherever you...
    Downloads: 5 This Week
    Last Update:
    See Project
  • 21
    The Operator Splitting QP Solver

    The Operator Splitting QP Solver

    The Operator Splitting QP Solver

    OSQP uses a specialized ADMM-based first-order method with custom sparse linear algebra routines that exploit structure in problem data. The algorithm is absolutely division-free after the setup and it requires no assumptions on problem data (the problem only needs to be convex). It just works. OSQP has an easy interface to generate customized embeddable C code with no memory manager required. OSQP supports many interfaces including C/C++, Fortran, Matlab, Python, R, Julia, Rust.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 22
    Causal ML

    Causal ML

    Uplift modeling and causal inference with machine learning algorithms

    Causal ML is a Python package that provides a suite of uplift modeling and causal inference methods using machine learning algorithms based on recent research [1]. It provides a standard interface that allows users to estimate the Conditional Average Treatment Effect (CATE) or Individual Treatment Effect (ITE) from experimental or observational data. Essentially, it estimates the causal impact of intervention T on outcome Y for users with observed features X, without strong assumptions on...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 23
    DoWhy

    DoWhy

    DoWhy is a Python library for causal inference

    DoWhy is a Python library for causal inference that supports explicit modeling and testing of causal assumptions. DoWhy is based on a unified language for causal inference, combining causal graphical models and potential outcomes frameworks. Much like machine learning libraries have done for prediction, DoWhy is a Python library that aims to spark causal thinking and analysis. DoWhy provides a wide variety of algorithms for effect estimation, causal structure learning, diagnosis of causal...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 24
    Google AI Edge Gallery

    Google AI Edge Gallery

    A gallery that showcases on-device ML/GenAI use cases

    Gallery is a curated collection of on-device machine learning examples, demo apps, and model artifacts designed to help developers experiment with and deploy ML at the edge. The project bundles runnable samples that show how to run TensorFlow Lite/Edge TPU models (and similar lightweight runtimes) on mobile and embedded platforms, demonstrating common tasks like image classification, object detection, audio recognition, and pose estimation. Each sample is intended to be both a learning aid...
    Downloads: 6 This Week
    Last Update:
    See Project
  • 25
    segment-geospatial

    segment-geospatial

    A Python package for segmenting geospatial data with the SAM

    The segment-geospatial package draws its inspiration from segment-anything-eo repository authored by Aliaksandr Hancharenka. To facilitate the use of the Segment Anything Model (SAM) for geospatial data, I have developed the segment-anything-py and segment-geospatial Python packages, which are now available on PyPI and conda-forge. My primary objective is to simplify the process of leveraging SAM for geospatial data analysis by enabling users to achieve this with minimal coding effort. I...
    Downloads: 6 This Week
    Last Update:
    See Project
Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.