Showing 1046 open source projects for "java open source"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Automate contact and company data extraction Icon
    Automate contact and company data extraction

    Build lead generation pipelines that pull emails, phone numbers, and company details from directories, maps, social platforms. Full API access.

    Generate leads at scale without building or maintaining scrapers. Use 10,000+ ready-made tools that handle authentication, pagination, and anti-bot protection. Pull data from business directories, social profiles, and public sources, then export to your CRM or database via API. Schedule recurring extractions, enrich existing datasets, and integrate with your workflows.
    Explore Apify Store
  • 1
    jMIR

    jMIR

    Music research software

    jMIR is an open-source software suite implemented in Java for use in music information retrieval (MIR) research. It can be used to study music in the form of audio recordings, symbolic encodings and lyrical transcriptions, and can also mine cultural information from the Internet. It also includes tools for managing and profiling large music collections and for checking audio for production errors. jMIR includes software for extracting features, applying machine learning algorithms, applying heuristic error error checkers, mining metadata and analyzing metadata.
    Leader badge
    Downloads: 6 This Week
    Last Update:
    See Project
  • 2
    SSD Keras

    SSD Keras

    A Keras port of single shot MultiBox detector

    This is a Keras port of the SSD model architecture introduced by Wei Liu et al. in the paper SSD: Single Shot MultiBox Detector. Ports of the trained weights of all the original models are provided below. This implementation is accurate, meaning that both the ported weights and models trained from scratch produce the same mAP values as the respective models of the original Caffe implementation. The main goal of this project is to create an SSD implementation that is well documented for those...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    SLING

    SLING

    A natural language frame semantics parser

    The aim of the SLING project is to learn to read and understand Wikipedia articles in many languages for the purpose of knowledge base completion, e.g. adding facts mentioned in Wikipedia (and other sources) to the Wikidata knowledge base. We use frame semantics as a common representation for both knowledge representation and document annotation. The SLING parser can be trained to produce frame semantic representations of text directly without any explicit intervening linguistic...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4

    Tsf_Mdnnhn

    Time Series Forecasting.

    Implementation of algorithm allowing Time Series Forecasting.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Trumba is an All-in-one Calendar Management and Event Registration platform Icon
    Trumba is an All-in-one Calendar Management and Event Registration platform

    Great for live, virtual and hybrid events

    Publish, promote and track your events more affordably and effectively—all in one place.
    Learn More
  • 5
    Deep Reinforcement Learning for Keras

    Deep Reinforcement Learning for Keras

    Deep Reinforcement Learning for Keras.

    keras-rl implements some state-of-the-art deep reinforcement learning algorithms in Python and seamlessly integrates with the deep learning library Keras. Furthermore, keras-rl works with OpenAI Gym out of the box. This means that evaluating and playing around with different algorithms is easy. Of course, you can extend keras-rl according to your own needs. You can use built-in Keras callbacks and metrics or define your own. Even more so, it is easy to implement your own environments and...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    Easy Machine Learning

    Easy Machine Learning

    Easy Machine Learning is a general-purpose dataflow-based system

    Machine learning algorithms have become the key components in many big data applications. However, the full potential of machine learning is still far from being realized because using machine learning algorithms is hard, especially on distributed platforms such as Hadoop and Spark. The key barriers come from not only the implementation of the algorithms themselves but also the processing for applying them to real applications which often involve multiple steps and different algorithms. Our...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    DeepLearn

    DeepLearn

    Implementation of research papers on Deep Learning+ NLP+ CV in Python

    Welcome to DeepLearn. This repository contains an implementation of the following research papers on NLP, CV, ML, and deep learning. The required dependencies are mentioned in requirement.txt. I will also use dl-text modules for preparing the datasets. If you haven't use it, please do have a quick look at it. CV, transfer learning, representation learning.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    Clustering by Shared Subspaces

    Clustering by Shared Subspaces

    Grouping Points by Shared Subspaces for Effective Subspace Clustering

    These functions implement a subspace clustering algorithm, proposed by Ye Zhu, Kai Ming Ting, and Mark J. Carman: "Grouping Points by Shared Subspaces for Effective Subspace Clustering", Published in Pattern Recognition Journal at https://doi.org/10.1016/j.patcog.2018.05.027
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9

    Face Recognition

    World's simplest facial recognition api for Python & the command line

    Face Recognition is the world's simplest face recognition library. It allows you to recognize and manipulate faces from Python or from the command line using dlib's (a C++ toolkit containing machine learning algorithms and tools) state-of-the-art face recognition built with deep learning. Face Recognition is highly accurate and is able to do a number of things. It can find faces in pictures, manipulate facial features in pictures, identify faces in pictures, and do face recognition on a...
    Downloads: 10 This Week
    Last Update:
    See Project
  • Say goodbye to broken revenue funnels and poor customer experiences Icon
    Say goodbye to broken revenue funnels and poor customer experiences

    Connect and coordinate your data, signals, tools, and people at every step of the customer journey.

    LeanData is a Demand Management solution that supports all go-to-market strategies such as account-based sales development, geo-based territories, and more. LeanData features a visual, intuitive workflow native to Salesforce that enables users to view their entire lead flow in one interface. LeanData allows users to access the drag-and-drop feature to route their leads. LeanData also features an algorithms match that uses multiple fields in Salesforce.
    Learn More
  • 10
    stanford-tensorflow-tutorials

    stanford-tensorflow-tutorials

    This repository contains code examples for the Stanford's course

    This repository contains code examples for the course CS 20: TensorFlow for Deep Learning Research. It will be updated as the class progresses. Detailed syllabus and lecture notes can be found in the site. For this course, I use python3.6 and TensorFlow 1.4.1.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    mAP

    mAP

    Evaluates the performance of your neural net for object recognition

    In practice, a higher mAP value indicates a better performance of your neural net, given your ground truth and set of classes. The performance of your neural net will be judged using the mAP criteria defined in the PASCAL VOC 2012 competition. We simply adapted the official Matlab code into Python (in our tests they both give the same results). First, your neural net detection-results are sorted by decreasing confidence and are assigned to ground-truth objects. We have "a match" when they...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    GPLAB is a Genetic Programming Toolbox for MATLAB
    Downloads: 3 This Week
    Last Update:
    See Project
  • 13
    Tensor Comprehensions

    Tensor Comprehensions

    A domain specific language to express machine learning workloads

    Tensor Comprehensions (TC) is a fully functional C++ library that automatically synthesizes high-performance machine learning kernels using Halide, ISL, and NVRTC or LLVM. TC additionally provides basic integration with Caffe2 and PyTorch. We provide more details in our paper on arXiv. This library is designed to be highly portable, machine-learning-framework agnostic and only requires a simple tensor library with memory allocation, offloading, and synchronization capabilities.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    The Teachingbox uses advanced machine learning techniques to relieve developers from the programming of hand-crafted sophisticated behaviors of autonomous agents (such as robots, game players etc...) In the current status we have implemented a well founded reinforcement learning core in Java with many popular usecases, environments, policies and learners. Obtaining the teachingbox: FOR USERS: If you want to download the latest releases, please visit: http://search.maven.org/#search|ga|1|teachingbox FOR DEVELOPERS: 1) If you use Apache Maven, just add the following dependency to your pom.xml: <dependency> <groupId>org.sf.teachingbox</groupId> <artifactId>teachingbox-core</artifactId> <version>1.2.3</version> </dependency> 2) If you want to check out the most recent source-code: git clone https://git.code.sf.net/p/teachingbox/core teachingbox-core Documentation: https://sourceforge.net/p/teachingbox/documentation/HEAD/tree/trunk/manual/
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15

    DGRLVQ

    Dynamic Generalized Relevance Learning Vector Quantization

    Some of the usual problems for Learning vector quantization (LVQ) based methods are that one cannot optimally guess about the number of prototypes required for initialization for multimodal data structures i.e.these algorithms are very sensitive to initialization of prototypes and one has to pre define the optimal number of prototypes before running the algorithm. If a prototype, for some reasons, is ‘outside’ the cluster which it should represent and if there are points of a different...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    PyTorch Book

    PyTorch Book

    PyTorch tutorials and fun projects including neural talk

    This is the corresponding code for the book "The Deep Learning Framework PyTorch: Getting Started and Practical", but it can also be used as a standalone PyTorch Getting Started Guide and Tutorial. The current version of the code is based on pytorch 1.0.1, if you want to use an older version please git checkout v0.4or git checkout v0.3. Legacy code has better python2/python3 compatibility, CPU/GPU compatibility test. The new version of the code has not been fully tested, it has been tested...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    Edward

    Edward

    A probabilistic programming language in TensorFlow

    A library for probabilistic modeling, inference, and criticism. Edward is a Python library for probabilistic modeling, inference, and criticism. It is a testbed for fast experimentation and research with probabilistic models, ranging from classical hierarchical models on small data sets to complex deep probabilistic models on large data sets. Edward fuses three fields, Bayesian statistics and machine learning, deep learning, and probabilistic programming. Edward is built on TensorFlow. It...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 18
    Image classification models for Keras

    Image classification models for Keras

    Keras code and weights files for popular deep learning models

    All architectures are compatible with both TensorFlow and Theano, and upon instantiation the models will be built according to the image dimension ordering set in your Keras configuration file at ~/.keras/keras.json. For instance, if you have set image_dim_ordering=tf, then any model loaded from this repository will get built according to the TensorFlow dimension ordering convention, "Width-Height-Depth". Pre-trained weights can be automatically loaded upon instantiation (weights='imagenet'...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19

    fscaret_shiny

    UI for fscaret

    User Interface (ui) application which implements the automated feature selection provided by the 'fscaret' package of R-environment.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    TorchCraft

    TorchCraft

    Connecting Torch to StarCraft

    We present TorchCraft, a library that enables deep learning research on Real-Time Strategy (RTS) games such as StarCraft: Brood War, by making it easier to control these games from a machine learning framework, here Torch. This white paper argues for using RTS games as a benchmark for AI research, and describes the design and components of TorchCraft. TorchCraft is a BWAPI module that sends StarCraft data out over a ZMQ connection. This lets you parse StarCraft data and interact with BWAPI...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    Intel neon

    Intel neon

    Intel® Nervana™ reference deep learning framework

    neon is Intel's reference deep learning framework committed to best performance on all hardware. Designed for ease of use and extensibility. See the new features in our latest release. We want to highlight that neon v2.0.0+ has been optimized for much better performance on CPUs by enabling Intel Math Kernel Library (MKL). The DNN (Deep Neural Networks) component of MKL that is used by neon is provided free of charge and downloaded automatically as part of the neon installation. The gpu...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    Caffe Framework

    Caffe Framework

    Caffe, a fast open framework for deep learning

    Caffe is a deep learning framework made with expression, speed, and modularity in mind. It is developed by Berkeley AI Research (BAIR) and by community contributors. Yangqing Jia created the project during his PhD at UC Berkeley. Caffe is released under the BSD 2-Clause license. Expressive architecture encourages application and innovation. Models and optimization are defined by configuration without hard-coding. Switch between CPU and GPU by setting a single flag to train on a GPU machine...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    This application allow user to predict dissolution profile of solid dispersion systems based on algorithms like symbolic regression, deep neural networks, random forests or generalized boosted models. Those techniques can be combined to create expert system. Application was created as a part of project K/DSC/004290 subsidy for young researchers from Polish Ministry of Higher Education.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    Batch File Artificial Intelligence

    Batch File Artificial Intelligence

    Chat bot and free roaming AI in batch

    Included in this project is a simple chat bot, a battle AI, and a swarm based free roaming AI.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    Tangent

    Tangent

    Source-to-source debuggable derivatives in pure Python

    Existing libraries implement automatic differentiation by tracing a program's execution (at runtime, like PyTorch) or by staging out a dynamic data-flow graph and then differentiating the graph (ahead-of-time, like TensorFlow). In contrast, Tangent performs ahead-of-time autodiff on the Python source code itself, and produces Python source code as its output. Tangent fills a unique location in the space of machine learning tools. As a result, you can finally read your automatic derivative...
    Downloads: 0 This Week
    Last Update:
    See Project