Showing 568 open source projects for "python linux"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Cloud tools for web scraping and data extraction Icon
    Cloud tools for web scraping and data extraction

    Deploy pre-built tools that crawl websites, extract structured data, and feed your applications. Reliable web data without maintaining scrapers.

    Automate web data collection with cloud tools that handle anti-bot measures, browser rendering, and data transformation out of the box. Extract content from any website, push to vector databases for RAG workflows, or pipe directly into your apps via API. Schedule runs, set up webhooks, and connect to your existing stack. Free tier available, then scale as you need to.
    Explore 10,000+ tools
  • 1
    Learn_Data_Science_in_3_Months

    Learn_Data_Science_in_3_Months

    This is the Curriculum for "Learn Data Science in 3 Months"

    This project lays out a 12-week plan to go from basics to a portfolio-ready understanding of data science. It breaks the journey into clear stages: Python fundamentals, data wrangling, visualization, statistics, machine learning, and end-to-end projects. The schedule mixes learning and doing, encouraging you to build small deliverables each week—like notebooks, dashboards, and model demos—to reinforce skills. It also includes suggestions for datasets and problem domains so you aren’t stuck...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2

    virgo

    32 bit VIRGO Linux Kernel

    Linux kernel fork-off with cloud and machine learning features
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3

    TensorImage

    Image classification library for easily training and deploying models

    (Visit our github repository at https://github.com/TensorImage/tensorimage for more information) TensorImage is and open source package for image classification. It has a wide range of data augmentation operations that can be performed over training data to prevent overfitting and increase testing accuracy. TensorImage is easy to use and manage as all files, trained models and data are organized within a workspace directory, which you can change at any time in the configuration file,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    Skater

    Skater

    Python library for model interpretation/explanations

    Skater is a unified framework to enable Model Interpretation for all forms of the model to help one build an Interpretable machine learning system often needed for real-world use-cases(** we are actively working towards to enabling faithful interpretability for all forms models). It is an open-source python library designed to demystify the learned structures of a black box model both globally(inference on the basis of a complete data set) and locally(inference about an individual...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Total Network Visibility for Network Engineers and IT Managers Icon
    Total Network Visibility for Network Engineers and IT Managers

    Network monitoring and troubleshooting is hard. TotalView makes it easy.

    This means every device on your network, and every interface on every device is automatically analyzed for performance, errors, QoS, and configuration.
    Learn More
  • 5
    3D ResNets for Action Recognition

    3D ResNets for Action Recognition

    3D ResNets for Action Recognition (CVPR 2018)

    We uploaded the pretrained models described in this paper including ResNet-50 pretrained on the combined dataset with Kinetics-700 and Moments in Time. We significantly updated our scripts. If you want to use older versions to reproduce our CVPR2018 paper, you should use the scripts in the CVPR2018 branch.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    Pragmatic AI

    Pragmatic AI

    [Book-2019] Pragmatic AI: An Introduction to Cloud-based ML

    Pragmatic AI is the first truly practical guide to solving real-world problems with contemporary machine learning, artificial intelligence, and cloud computing tools. Writing for business professionals, decision-makers, and students who aren’t professional data scientists, Noah Gift demystifies all the tools and technologies you need to get results. He illuminates powerful off-the-shelf cloud-based solutions from Google, Amazon, and Microsoft, as well as accessible techniques using Python...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7

    CRP - Chemical Reaction Prediction

    Predicting Organic Reactions using Neural Networks.

    The intend is to solve the forward-reaction prediction problem, where the reactants are known and the interest is in generating the reaction products using Deep learning. This Graphical User Interface takes simplified molecular-input line-entry system (SMILES) as an input and generates the product SMILE & molecule. Beam search is used in Version 2, to generate top 5 predictions. Maximum input length for the model is 15 (excluding spaces).
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    Scikit-plot

    Scikit-plot

    An intuitive library to add plotting functionality to scikit-learn

    Single line functions for detailed visualizations. Scikit-plot is the result of an unartistic data scientist's dreadful realization that visualization is one of the most crucial components in the data science process, not just a mere afterthought. Gaining insights is simply a lot easier when you're looking at a colored heatmap of a confusion matrix complete with class labels rather than a single-line dump of numbers enclosed in brackets. Besides, if you ever need to present your results to...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    anaGo

    anaGo

    Bidirectional LSTM-CRF and ELMo for Named-Entity Recognition

    anaGo is a Python library for sequence labeling(NER, PoS Tagging,...), implemented in Keras. anaGo can solve sequence labeling tasks such as named entity recognition (NER), part-of-speech tagging (POS tagging), semantic role labeling (SRL) and so on. Unlike traditional sequence labeling solver, anaGo doesn't need to define any language-dependent features. Thus, we can easily use anaGo for any language. In anaGo, the simplest type of model is the Sequence model. Sequence model includes...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Pest Control Management Software Icon
    Pest Control Management Software

    Pocomos is a cloud-based field service solution that caters to businesses

    Built for the pest control industry, but also works great for Mosquito Control, Bin Cleaning, Window Washing, Solar Panel Cleaning, and other Home Service Businesses in need of an easy-to-use software that helps you simplify routing, scheduling, communications, payment processing, truck tracking, time tracking, and reporting.
    Learn More
  • 10

    AerinSistemas-Noname

    Elasticsearch to Pandas dataframe or CSV

    API and command line utility, written in Python, for querying Elasticsearch exporting result as documents into a CSV file. The search can be done using logical operators or ranges, in combination or alone. The output can be limited to the desired attributes. Also ToT can insert the querying to a Pandas Dataframe or/and save its in a HDF5 container (under development).
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    SSD Keras

    SSD Keras

    A Keras port of single shot MultiBox detector

    This is a Keras port of the SSD model architecture introduced by Wei Liu et al. in the paper SSD: Single Shot MultiBox Detector. Ports of the trained weights of all the original models are provided below. This implementation is accurate, meaning that both the ported weights and models trained from scratch produce the same mAP values as the respective models of the original Caffe implementation. The main goal of this project is to create an SSD implementation that is well documented for those...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    Deep Reinforcement Learning for Keras

    Deep Reinforcement Learning for Keras

    Deep Reinforcement Learning for Keras.

    keras-rl implements some state-of-the-art deep reinforcement learning algorithms in Python and seamlessly integrates with the deep learning library Keras. Furthermore, keras-rl works with OpenAI Gym out of the box. This means that evaluating and playing around with different algorithms is easy. Of course, you can extend keras-rl according to your own needs. You can use built-in Keras callbacks and metrics or define your own. Even more so, it is easy to implement your own environments and...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    DeepLearn

    DeepLearn

    Implementation of research papers on Deep Learning+ NLP+ CV in Python

    Welcome to DeepLearn. This repository contains an implementation of the following research papers on NLP, CV, ML, and deep learning. The required dependencies are mentioned in requirement.txt. I will also use dl-text modules for preparing the datasets. If you haven't use it, please do have a quick look at it. CV, transfer learning, representation learning.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14

    Face Recognition

    World's simplest facial recognition api for Python & the command line

    Face Recognition is the world's simplest face recognition library. It allows you to recognize and manipulate faces from Python or from the command line using dlib's (a C++ toolkit containing machine learning algorithms and tools) state-of-the-art face recognition built with deep learning. Face Recognition is highly accurate and is able to do a number of things. It can find faces in pictures, manipulate facial features in pictures, identify faces in pictures, and do face recognition on a...
    Downloads: 9 This Week
    Last Update:
    See Project
  • 15
    mAP

    mAP

    Evaluates the performance of your neural net for object recognition

    In practice, a higher mAP value indicates a better performance of your neural net, given your ground truth and set of classes. The performance of your neural net will be judged using the mAP criteria defined in the PASCAL VOC 2012 competition. We simply adapted the official Matlab code into Python (in our tests they both give the same results). First, your neural net detection-results are sorted by decreasing confidence and are assigned to ground-truth objects. We have "a match" when they...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    stanford-tensorflow-tutorials

    stanford-tensorflow-tutorials

    This repository contains code examples for the Stanford's course

    This repository contains code examples for the course CS 20: TensorFlow for Deep Learning Research. It will be updated as the class progresses. Detailed syllabus and lecture notes can be found in the site. For this course, I use python3.6 and TensorFlow 1.4.1.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    DIGITS

    DIGITS

    Deep Learning GPU training system

    The NVIDIA Deep Learning GPU Training System (DIGITS) puts the power of deep learning into the hands of engineers and data scientists. DIGITS can be used to rapidly train the highly accurate deep neural network (DNNs) for image classification, segmentation and object detection tasks. DIGITS simplifies common deep learning tasks such as managing data, designing and training neural networks on multi-GPU systems, monitoring performance in real-time with advanced visualizations, and selecting...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 18
    The Deep Review

    The Deep Review

    A collaboratively written review paper on deep learning, genomics, etc

    This repository is home to the Deep Review, a review article on deep learning in precision medicine. The Deep Review is collaboratively written on GitHub using a tool called Manubot (see below). The project operates on an open contribution model, welcoming contributions from anyone. To see what's incoming, check the open pull requests. For project discussion and planning see the Issues. As of writing, we are aiming to publish an update of the deep review. We will continue to make project...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    PyTorch Book

    PyTorch Book

    PyTorch tutorials and fun projects including neural talk

    This is the corresponding code for the book "The Deep Learning Framework PyTorch: Getting Started and Practical", but it can also be used as a standalone PyTorch Getting Started Guide and Tutorial. The current version of the code is based on pytorch 1.0.1, if you want to use an older version please git checkout v0.4or git checkout v0.3. Legacy code has better python2/python3 compatibility, CPU/GPU compatibility test. The new version of the code has not been fully tested, it has been tested...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    Edward

    Edward

    A probabilistic programming language in TensorFlow

    A library for probabilistic modeling, inference, and criticism. Edward is a Python library for probabilistic modeling, inference, and criticism. It is a testbed for fast experimentation and research with probabilistic models, ranging from classical hierarchical models on small data sets to complex deep probabilistic models on large data sets. Edward fuses three fields, Bayesian statistics and machine learning, deep learning, and probabilistic programming. Edward is built on TensorFlow. It...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 21
    Image classification models for Keras

    Image classification models for Keras

    Keras code and weights files for popular deep learning models

    All architectures are compatible with both TensorFlow and Theano, and upon instantiation the models will be built according to the image dimension ordering set in your Keras configuration file at ~/.keras/keras.json. For instance, if you have set image_dim_ordering=tf, then any model loaded from this repository will get built according to the TensorFlow dimension ordering convention, "Width-Height-Depth". Pre-trained weights can be automatically loaded upon instantiation (weights='imagenet'...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    Intel neon

    Intel neon

    Intel® Nervana™ reference deep learning framework

    neon is Intel's reference deep learning framework committed to best performance on all hardware. Designed for ease of use and extensibility. See the new features in our latest release. We want to highlight that neon v2.0.0+ has been optimized for much better performance on CPUs by enabling Intel Math Kernel Library (MKL). The DNN (Deep Neural Networks) component of MKL that is used by neon is provided free of charge and downloaded automatically as part of the neon installation. The gpu...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    AI-Blocks

    AI-Blocks

    A powerful and intuitive WYSIWYG to create Machine Learning models

    A powerful and intuitive WYSIWYG interface that allows anyone to create Machine Learning models! The concept of AI-Blocs is to have a simple scene with draggable objects that have scripts attached to them. The model can be run directly on the editor or be exported to a standalone script that runs on Tensorflow. Variables are parsed from python scripts and can be edited from the AI-Blocs properties panel. To run your model simply press the "Play" button and let the magic happen! The project...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 24
    Tangent

    Tangent

    Source-to-source debuggable derivatives in pure Python

    Existing libraries implement automatic differentiation by tracing a program's execution (at runtime, like PyTorch) or by staging out a dynamic data-flow graph and then differentiating the graph (ahead-of-time, like TensorFlow). In contrast, Tangent performs ahead-of-time autodiff on the Python source code itself, and produces Python source code as its output. Tangent fills a unique location in the space of machine learning tools. As a result, you can finally read your automatic derivative...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    Deepo

    Deepo

    Set up deep learning environment in a single command line

    Deepo is a series of Docker images that allows you to quickly set up your deep learning research environment, supports almost all commonly used deep learning frameworks, supports GPU acceleration (CUDA and cuDNN included), also works in CPU-only mode, and works on Linux (CPU version/GPU version), Windows (CPU version) and OS X (CPU version). Their Dockerfile generator that allows you to customize your own environment with Lego-like modules, and automatically resolves the dependencies for...
    Downloads: 0 This Week
    Last Update:
    See Project