Showing 71 open source projects for "python package"

View related business solutions
  • Enterprise-grade ITSM, for every business Icon
    Enterprise-grade ITSM, for every business

    Give your IT, operations, and business teams the ability to deliver exceptional services—without the complexity.

    Freshservice is an intuitive, AI-powered platform that helps IT, operations, and business teams deliver exceptional service without the usual complexity. Automate repetitive tasks, resolve issues faster, and provide seamless support across the organization. From managing incidents and assets to driving smarter decisions, Freshservice makes it easy to stay efficient and scale with confidence.
    Try it Free
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • 1
    Causal ML

    Causal ML

    Uplift modeling and causal inference with machine learning algorithms

    Causal ML is a Python package that provides a suite of uplift modeling and causal inference methods using machine learning algorithms based on recent research [1]. It provides a standard interface that allows users to estimate the Conditional Average Treatment Effect (CATE) or Individual Treatment Effect (ITE) from experimental or observational data. Essentially, it estimates the causal impact of intervention T on outcome Y for users with observed features X, without strong assumptions...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 2
    ClearML

    ClearML

    Streamline your ML workflow

    ClearML is an open source platform that automates and simplifies developing and managing machine learning solutions for thousands of data science teams all over the world. It is designed as an end-to-end MLOps suite allowing you to focus on developing your ML code & automation, while ClearML ensures your work is reproducible and scalable. The ClearML Python Package for integrating ClearML into your existing scripts by adding just two lines of code, and optionally extending your experiments...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 3
    GluonTS

    GluonTS

    Probabilistic time series modeling in Python

    GluonTS is a Python package for probabilistic time series modeling, focusing on deep learning based models. GluonTS requires Python 3.6 or newer, and the easiest way to install it is via pip. We train a DeepAR-model and make predictions using the simple "airpassengers" dataset. The dataset consists of a single time-series, containing monthly international passengers between the years 1949 and 1960, a total of 144 values (12 years * 12 months). We split the dataset into train and test parts...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 4
    Django friendly finite state machine

    Django friendly finite state machine

    Django friendly finite state machine support

    ... and template tags to integrate Django-fsm state transitions into the Django admin. FSM really helps to structure the code, especially when a new developer comes to the project. FSM is most effective when you use it for some sequential steps. Transition logging support could be achieved with help of django-fsm-log package.
    Downloads: 2 This Week
    Last Update:
    See Project
  • Test your software product anywhere in the world Icon
    Test your software product anywhere in the world

    Get feedback from real people across 190+ countries with the devices, environments, and payment instruments you need for your perfect test.

    Global App Testing is a managed pool of freelancers used by Google, Meta, Microsoft, and other world-beating software companies.
    Try us today.
  • 5
    tsai

    tsai

    Time series Timeseries Deep Learning Machine Learning Pytorch fastai

    tsai is an open-source deep learning package built on top of Pytorch & fastai focused on state-of-the-art techniques for time series tasks like classification, regression, forecasting, and imputation. Starting with tsai 0.3.0 tsai will only install hard dependencies. Other soft dependencies (which are only required for selected tasks) will not be installed by default (this is the recommended approach. If you require any of the dependencies that is not installed, tsai will ask you to install...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 6
    HDBSCAN

    HDBSCAN

    A high performance implementation of HDBSCAN clustering

    HDBSCAN - Hierarchical Density-Based Spatial Clustering of Applications with Noise. Performs DBSCAN over varying epsilon values and integrates the result to find a clustering that gives the best stability over epsilon. This allows HDBSCAN to find clusters of varying densities (unlike DBSCAN), and be more robust to parameter selection. In practice this means that HDBSCAN returns a good clustering straight away with little or no parameter tuning -- and the primary parameter, minimum cluster...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 7
    PyTorch Geometric Temporal

    PyTorch Geometric Temporal

    Spatiotemporal Signal Processing with Neural Machine Learning Models

    ... management domains. Finally, you can also create your own datasets. The package interfaces well with Pytorch Lightning which allows training on CPUs, single and multiple GPUs out-of-the-box. PyTorch Geometric Temporal makes implementing Dynamic and Temporal Graph Neural Networks quite easy - see the accompanying tutorial. Head over to our documentation to find out more about installation, creation of datasets and a full list of implemented methods and available datasets.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 8
    GPflow

    GPflow

    Gaussian processes in TensorFlow

    GPflow is a package for building Gaussian process models in Python. It implements modern Gaussian process inference for composable kernels and likelihoods. GPflow builds on TensorFlow 2.4+ and TensorFlow Probability for running computations, which allows fast execution on GPUs.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    BindsNET

    BindsNET

    Simulation of spiking neural networks (SNNs) using PyTorch

    A Python package used for simulating spiking neural networks (SNNs) on CPUs or GPUs using PyTorch Tensor functionality. BindsNET is a spiking neural network simulation library geared towards the development of biologically inspired algorithms for machine learning. This package is used as part of ongoing research on applying SNNs to machine learning (ML) and reinforcement learning (RL) problems in the Biologically Inspired Neural & Dynamical Systems (BINDS) lab.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Picsart Enterprise Background Removal API for Stunning eCommerce Visuals Icon
    Picsart Enterprise Background Removal API for Stunning eCommerce Visuals

    Instantly remove the background from your images in just one click.

    With our Remove Background API tool, you can access the transformative capabilities of automation , which will allow you to turn any photo asset into compelling product imagery. With elevated visuals quality on your digital platforms, you can captivate your audience, and therefore achieve higher engagement and sales.
    Learn More
  • 10
    imbalanced-learn

    imbalanced-learn

    A Python Package to Tackle the Curse of Imbalanced Datasets in ML

    Imbalanced-learn (imported as imblearn) is an open source, MIT-licensed library relying on scikit-learn (imported as sklearn) and provides tools when dealing with classification with imbalanced classes.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    Alibi Detect

    Alibi Detect

    Algorithms for outlier, adversarial and drift detection

    Alibi Detect is an open source Python library focused on outlier, adversarial and drift detection. The package aims to cover both online and offline detectors for tabular data, text, images and time series. Both TensorFlow and PyTorch backends are supported for drift detection.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    TextAttack

    TextAttack

    Python framework for adversarial attacks, and data augmentation

    Generating adversarial examples for NLP models. TextAttack is a Python framework for adversarial attacks, data augmentation, and model training in NLP.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    MLJAR Studio

    MLJAR Studio

    Python package for AutoML on Tabular Data with Feature Engineering

    We are working on new way for visual programming. We developed a desktop application called MLJAR Studio. It is a notebook-based development environment with interactive code recipes and a managed Python environment. All running locally on your machine. We are waiting for your feedback. The mljar-supervised is an Automated Machine Learning Python package that works with tabular data. It is designed to save time for a data scientist. It abstracts the common way to preprocess the data, construct...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    Physical Symbolic Optimization (Φ-SO)

    Physical Symbolic Optimization (Φ-SO)

    Physical Symbolic Optimization

    Physical Symbolic Optimization (Φ-SO) - A symbolic optimization package built for physics. Symbolic regression module uses deep reinforcement learning to infer analytical physical laws that fit data points, searching in the space of functional forms.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    NeuralProphet

    NeuralProphet

    A simple forecasting package

    NeuralProphet bridges the gap between traditional time-series models and deep learning methods. It's based on PyTorch and can be installed using pip. A Neural Network based Time-Series model, inspired by Facebook Prophet and AR-Net, built on PyTorch. You can find the datasets used in the tutorials, including data preprocessing examples, in our neuralprophet-data repository. The documentation page may not we entirely up to date. Docstrings should be reliable, please refer to those when in...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    TensorFlow.NET

    TensorFlow.NET

    .NET Standard bindings for Google's TensorFlow for developing models

    TensorFlow.NET (TF.NET) provides a .NET Standard binding for TensorFlow. It aims to implement the complete Tensorflow API in C# which allows .NET developers to develop, train and deploy Machine Learning models with the cross-platform .NET Standard framework. TensorFlow.NET has built-in Keras high-level interface and is released as an independent package TensorFlow.Keras. SciSharp STACK's mission is to bring popular data science technology into the .NET world and to provide .NET developers...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    torchtext

    torchtext

    Data loaders and abstractions for text and NLP

    We recommend Anaconda as a Python package management system. Please refer to pytorch.org for the details of PyTorch installation. LTS versions are distributed through a different channel than the other versioned releases. Alternatively, you might want to use the Moses tokenizer port in SacreMoses (split from NLTK). You have to install SacreMoses. To build torchtext from source, you need git, CMake and C++11 compiler such as g++. When building from source, make sure that you have the same C...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    PyTorch/XLA

    PyTorch/XLA

    Enabling PyTorch on Google TPU

    PyTorch/XLA is a Python package that uses the XLA deep learning compiler to connect the PyTorch deep learning framework and Cloud TPUs. You can try it right now, for free, on a single Cloud TPU with Google Colab, and use it in production and on Cloud TPU Pods with Google Cloud. Take a look at one of our Colab notebooks to quickly try different PyTorch networks running on Cloud TPUs and learn how to use Cloud TPUs as PyTorch devices. We are also introducing new TPU VMs for more transparent...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    High-Level Training Utilities Pytorch

    High-Level Training Utilities Pytorch

    High-level training, data augmentation, and utilities for Pytorch

    Contains significant improvements, bug fixes, and additional support. Get it from the releases, or pull the master branch. This package provides a few things. A high-level module for Keras-like training with callbacks, constraints, and regularizers. Comprehensive data augmentation, transforms, sampling, and loading. Utility tensor and variable functions so you don't need numpy as often. Have any feature requests? Submit an issue! I'll make it happen. Specifically, any data augmentation, data...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    Lightning Bolts

    Lightning Bolts

    Toolbox of models, callbacks, and datasets for AI/ML researchers

    Bolts package provides a variety of components to extend PyTorch Lightning, such as callbacks & datasets, for applied research and production. Torch ORT converts your model into an optimized ONNX graph, speeding up training & inference when using NVIDIA or AMD GPUs. We can introduce sparsity during fine-tuning with SparseML, which ultimately allows us to leverage the DeepSparse engine to see performance improvements at inference time.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    AI Explainability 360

    AI Explainability 360

    Interpretability and explainability of data and machine learning model

    The AI Explainability 360 toolkit is an open-source library that supports the interpretability and explainability of datasets and machine learning models. The AI Explainability 360 Python package includes a comprehensive set of algorithms that cover different dimensions of explanations along with proxy explainability metrics. The AI Explainability 360 interactive experience provides a gentle introduction to the concepts and capabilities by walking through an example use case for different...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    pyts

    pyts

    A Python package for time series classification

    pyts is a Python package dedicated to time series classification. It aims to make time series classification easily accessible by providing preprocessing and utility tools, and implementations of several time series classification algorithms. The package comes up with many unit tests and continuous integration ensures new code integration and backward compatibility. The package is distributed under the 3-clause BSD license.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    smclarify

    smclarify

    Fairness aware machine learning. Bias detection and mitigation

    Fairness Aware Machine Learning. Bias detection and mitigation for datasets and models. A facet is column or feature that will be used to measure bias against. A facet can have value(s) that designates that sample as "sensitive". Bias detection and mitigation for datasets and models. The label is a column or feature which is the target for training a machine learning model. The label can have value(s) that designates that sample as having a "positive" outcome. A bias measure is a function...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    DeepCTR

    DeepCTR

    Package of deep-learning based CTR models

    DeepCTR is a Easy-to-use,Modular and Extendible package of deep-learning based CTR models along with lots of core components layers which can be used to easily build custom models. You can use any complex model with model.fit(), and model.predict(). Provide tf.keras.Model like interface for quick experiment. Provide tensorflow estimator interface for large scale data and distributed training. It is compatible with both tf 1.x and tf 2.x. With the great success of deep learning,DNN-based...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 25
    DeepCTR-Torch

    DeepCTR-Torch

    Easy-to-use,Modular and Extendible package of deep-learning models

    DeepCTR-Torch is an easy-to-use, Modular and Extendible package of deep-learning-based CTR models along with lots of core components layers that can be used to build your own custom model easily.It is compatible with PyTorch.You can use any complex model with model.fit() and model.predict(). With the great success of deep learning, DNN-based techniques have been widely used in CTR estimation tasks. The data in the CTR estimation task usually includes high sparse,high cardinality categorical...
    Downloads: 0 This Week
    Last Update:
    See Project
Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.