Showing 97 open source projects for "artificial images"

View related business solutions
  • Our Free Plans just got better! | Auth0 by Okta Icon
    Our Free Plans just got better! | Auth0 by Okta

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your secuirty. Auth0 now, thank yourself later.
    Try free now
  • Secure remote access solution to your private network, in the cloud or on-prem. Icon
    Secure remote access solution to your private network, in the cloud or on-prem.

    Deliver secure remote access with OpenVPN.

    OpenVPN is here to bring simple, flexible, and cost-effective secure remote access to companies of all sizes, regardless of where their resources are located.
    Get started — no credit card required.
  • 1
    Simd Library

    Simd Library

    C++ image processing and machine learning library with using of SIMD

    The Simd Library is a free open-source image processing and machine learning library, designed for C and C++ programmers. It provides many useful high-performance algorithms for image processing such as pixel format conversion, image scaling and filtration, extraction of statistical information from images, motion detection, object detection and classification, neural networks. The algorithms are optimized with using of different SIMD CPU extensions. In particular, the library supports...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    Lance

    Lance

    Modern columnar data format for ML and LLMs implemented in Rust

    Lance is a columnar data format that is easy and fast to version, query and train on. It’s designed to be used with images, videos, 3D point clouds, audio and of course tabular data. It supports any POSIX file systems, and cloud storage like AWS S3 and Google Cloud Storage.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    Adversarial Robustness Toolbox

    Adversarial Robustness Toolbox

    Adversarial Robustness Toolbox (ART) - Python Library for ML security

    Adversarial Robustness Toolbox (ART) is a Python library for Machine Learning Security. ART provides tools that enable developers and researchers to evaluate, defend, certify and verify Machine Learning models and applications against the adversarial threats of Evasion, Poisoning, Extraction, and Inference. ART supports all popular machine learning frameworks (TensorFlow, Keras, PyTorch, MXNet, sci-kit-learn, XGBoost, LightGBM, CatBoost, GPy, etc.), all data types (images, tables, audio, video...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    MMOCR

    MMOCR

    OpenMMLab Text Detection, Recognition and Understanding Toolbox

    ... design of MMOCR enables users to define their own optimizers, data preprocessors, and model components such as backbones, necks and heads as well as losses. Please refer to Getting Started for how to construct a customized model. The toolbox provides a comprehensive set of utilities which can help users assess the performance of models. It includes visualizers which allow visualization of images, ground truths as well as predicted bounding boxes, and a validation tool for evaluating checkpoints.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Smart Monitoring for Any Network. Powered by Open Source. Icon
    Smart Monitoring for Any Network. Powered by Open Source.

    Trusted by thousands of IT teams worldwide

    NMIS helps with fault, performance, and configuration management. It provides performance graphs, threshold alerting, and detailed notification policies with various methods. NMIS monitors an organization’s IT environment, helps identify and rectify faults, and provides valuable information for IT planning.
    Get a Free Trial
  • 5
    CLIP-as-service

    CLIP-as-service

    Embed images and sentences into fixed-length vectors

    CLIP-as-service is a low-latency high-scalability service for embedding images and text. It can be easily integrated as a microservice into neural search solutions. Serve CLIP models with TensorRT, ONNX runtime and PyTorch w/o JIT with 800QPS[*]. Non-blocking duplex streaming on requests and responses, designed for large data and long-running tasks. Horizontally scale up and down multiple CLIP models on single GPU, with automatic load balancing. Easy-to-use. No learning curve, minimalist design...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    GoCV

    GoCV

    Go package for computer vision using OpenCV 4 and beyond

    ... typically processes video images, then uses the data to extract information in order to do something useful. Since memory allocations for images in GoCV are done through C based code, the go garbage collector will not clean all resources associated with a Mat. As a result, any Mat created must be closed to avoid memory leaks.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    BentoML

    BentoML

    Unified Model Serving Framework

    ... to scale separately from the serving logic. Adaptive batching dynamically groups inference requests for optimal performance. Orchestrate distributed inference graph with multiple models via Yatai on Kubernetes. Easily configure CUDA dependencies for running inference with GPU. Automatically generate docker images for production deployment.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    Pytorch-toolbelt

    Pytorch-toolbelt

    PyTorch extensions for fast R&D prototyping and Kaggle farming

    A pytorch-toolbelt is a Python library with a set of bells and whistles for PyTorch for fast R&D prototyping and Kaggle farming. Easy model building using flexible encoder-decoder architecture. Modules: CoordConv, SCSE, Hypercolumn, Depthwise separable convolution and more. GPU-friendly test-time augmentation TTA for segmentation and classification. GPU-friendly inference on huge (5000x5000) images. Every-day common routines (fix/restore random seed, filesystem utils, metrics). Losses...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    SSD in PyTorch 1.0

    SSD in PyTorch 1.0

    High quality, fast, modular reference implementation of SSD in PyTorch

    This repository implements SSD (Single Shot MultiBox Detector). The implementation is heavily influenced by the projects ssd.pytorch, pytorch-ssd and maskrcnn-benchmark. This repository aims to be the code base for research based on SSD. Multi-GPU training and inference: We use DistributedDataParallel, you can train or test with arbitrary GPU(s), the training schema will change accordingly. Add your own modules without pain. We abstract backbone, Detector, BoxHead, BoxPredictor, etc. You can...
    Downloads: 0 This Week
    Last Update:
    See Project
  • The Fastest Analytics Database for Observability, ML, and GenAI | ClickHouse Icon
    The Fastest Analytics Database for Observability, ML, and GenAI | ClickHouse

    Unlock faster queries without skyrocketing costs.

    ClickHouse powers businesses with the fastest open-source OLAP database, built for rapid analytics, observability, and business intelligence. Deploy on AWS, GCP, or your own VPC with BYOC, and query billions of rows in seconds – all cost-efficiently. Trusted by Sony, Lyft, and Cisco, it delivers unmatched speed, seamless stack integration, and enterprise-grade performance. Turn massive datasets into decisions with ClickHouse.
    Start free trial
  • 10
    hloc

    hloc

    Visual localization made easy with hloc

    .... Just download the datasets and you're reading to go! The notebook pipeline_InLoc.ipynb shows the steps for localizing with InLoc. It's much simpler since a 3D SfM model is not needed. We show in pipeline_SfM.ipynb how to run 3D reconstruction for an unordered set of images. This generates reference poses, and a nice sparse 3D model suitable for localization with the same pipeline as Aachen.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    Imagen - Pytorch

    Imagen - Pytorch

    Implementation of Imagen, Google's Text-to-Image Neural Network

    Implementation of Imagen, Google's Text-to-Image Neural Network that beats DALL-E2, in Pytorch. It is the new SOTA for text-to-image synthesis. Architecturally, it is actually much simpler than DALL-E2. It consists of a cascading DDPM conditioned on text embeddings from a large pre-trained T5 model (attention network). It also contains dynamic clipping for improved classifier-free guidance, noise level conditioning, and a memory-efficient unit design. It appears neither CLIP nor prior...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    Pandas Profiling

    Pandas Profiling

    Create HTML profiling reports from pandas DataFrame objects

    ..., separator), scripts (Latin, Cyrillic) and blocks (ASCII, Cyrilic). File sizes, creation dates, dimensions, indication of truncated images and existance of EXIF metadata. Mostly global details about the dataset (number of records, number of variables, overall missigness and duplicates, memory footprint). Comprehensive and automatic list of potential data quality issues (high correlation, skewness, uniformity, zeros, missing values, constant values, between others).
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    TensorFlow Serving

    TensorFlow Serving

    Serving system for machine learning models

    .... The easiest and most straight-forward way of using TensorFlow Serving is with Docker images. We highly recommend this route unless you have specific needs that are not addressed by running in a container. In order to serve a Tensorflow model, simply export a SavedModel from your Tensorflow program. SavedModel is a language-neutral, recoverable, hermetic serialization format that enables higher-level systems and tools to produce, consume, and transform TensorFlow models.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    Knet

    Knet

    Koç University deep learning framework

    Knet.jl is a deep learning package implemented in Julia, so you should be able to run it on any machine that can run Julia. It has been extensively tested on Linux machines with NVIDIA GPUs and CUDA libraries, and it has been reported to work on OSX and Windows. If you would like to try it on your own computer, please follow the instructions on Installation. If you would like to try working with a GPU and do not have access to one, take a look at Using Amazon AWS or Using Microsoft Azure. If...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    PixelAnnotationTool

    PixelAnnotationTool

    Annotate quickly images

    Software that allows you to manually and quickly annotate images in directories. The method is pseudo manual because it uses the algorithm watershed marked of OpenCV. The general idea is to manually provide the marker with brushes and then to launch the algorithm. If at first pass the segmentation needs to be corrected, the user can refine the markers by drawing new ones on the erroneous areas.
    Downloads: 6 This Week
    Last Update:
    See Project
  • 16
    Pigo

    Pigo

    Fast face detection, pupil/eyes localization

    Fast face detection, pupil/eyes localization and facial landmark points detection library in pure Go. Pigo is a pure Go face detection, pupil/eyes localization and facial landmark points detection library based on the Pixel Intensity Comparison-based Object detection paper. The reason why Pigo has been developed is because almost all of the currently existing solutions for face detection in the Go ecosystem are purely bindings to some C/C++ libraries like OpenCV or dlib, but calling a C...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    CometAnalyser

    CometAnalyser

    CometAnalyser, for quantitative comet assay analysis.

    Description: Comet assay provides an easy solution to estimate DNA damage in single cells through microscopy assessment. To obtain reproducible and reliable quantitative data, we developed an easy-to-use tool named CometAnalyser. CometAnalyser is an open-source deep-learning tool designed for the analysis of both fluorescent and silver-stained wide-field microscopy images. Once the comets are segmented and classified, several intensity/morphological features are automatically exported...
    Leader badge
    Downloads: 29 This Week
    Last Update:
    See Project
  • 18
    SMILI

    SMILI

    Scientific Visualisation Made Easy

    The Simple Medical Imaging Library Interface (SMILI), pronounced 'smilie', is an open-source, light-weight and easy-to-use medical imaging viewer and library for all major operating systems. The main sMILX application features for viewing n-D images, vector images, DICOMs, anonymizing, shape analysis and models/surfaces with easy drag and drop functions. It also features a number of standard processing algorithms for smoothing, thresholding, masking etc. images and models, both with graphical...
    Leader badge
    Downloads: 21 This Week
    Last Update:
    See Project
  • 19
    KAIR

    KAIR

    Image Restoration Toolbox (PyTorch). Training and testing codes

    Image restoration toolbox (PyTorch). Training and testing codes for DPIR, USRNet, DnCNN, FFDNet, SRMD, DPSR, BSR/GAN, SwinIR.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 20
    find-similar

    find-similar

    User-friendly library to find similar objects

    The mission of the FindSimilar project is to provide a powerful and versatile open source library that empowers developers to efficiently find similar objects and perform comparisons across a variety of data types. Whether dealing with texts, images, audio, or more, our project aims to simplify the process of identifying similarities and enhancing decision-making. https://github.com/findsimilar/find-similar - GitHub repo http://demo.findsimilar.org/ - Demo project and tutorial https...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    StudioGAN

    StudioGAN

    StudioGAN is a Pytorch library providing implementations of networks

    StudioGAN is a Pytorch library providing implementations of representative Generative Adversarial Networks (GANs) for conditional/unconditional image generation. StudioGAN aims to offer an identical playground for modern GANs so that machine learning researchers can readily compare and analyze a new idea. Moreover, StudioGAN provides an unprecedented-scale benchmark for generative models. The benchmark includes results from GANs (BigGAN-Deep, StyleGAN-XL), auto-regressive models (MaskGIT,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    BEVFormer

    BEVFormer

    Implementation of BEVFormer, a camera-only framework

    3D visual perception tasks, including 3D detection and map segmentation based on multi-camera images, are essential for autonomous driving systems. In this work, we present a new framework termed BEVFormer, which learns unified BEV representations with spatiotemporal transformers to support multiple autonomous driving perception tasks. In a nutshell, BEVFormer exploits both spatial and temporal information by interacting with spatial and temporal space through predefined grid-shaped BEV queries...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    YOLOX

    YOLOX

    YOLOX is a high-performance anchor-free YOLO, exceeding yolov3~v5

    YOLOX is a high-performance anchor-free YOLO, exceeding yolov3~v5 with MegEngine, ONNX, TensorRT, ncnn, and OpenVINO supported. YOLOX is an anchor-free version of YOLO, with a simpler design but better performance! It aims to bridge the gap between research and industrial communities. Prepare your own dataset with images and labels first. For labeling images, you can use tools like Labelme or CVAT. One more thing worth noting is that you should also implement pull_item and load_anno method...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 24
    Spheroid_segmentation

    Spheroid_segmentation

    Deep learning networks for spheroid segmentation

    To accelerate the analysis of tumors' spheroids, different deep learning networks were trained to automatize the segmentation process. The code provides the trained networks based on Vgg16, Vgg19, ResNet18, and ResNet50 ready to be used for segmentation purposes. It also provides Matlab functions ready to be used to train new networks, segment new images, and measure the quality of the training using different quantitative parameters.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    Face Mask Detection

    Face Mask Detection

    Face Mask Detection system based on computer vision and deep learning

    Face Mask Detection system based on computer vision and deep learning using OpenCV and Tensorflow/Keras. Face Mask Detection System built with OpenCV, Keras/TensorFlow using Deep Learning and Computer Vision concepts in order to detect face masks in static images as well as in real-time video streams. Amid the ongoing COVID-19 pandemic, there are no efficient face mask detection applications which are now in high demand for transportation means, densely populated areas, residential districts...
    Downloads: 0 This Week
    Last Update:
    See Project