Showing 580 open source projects for "python source"

View related business solutions
  • Managed MySQL, PostgreSQL, and SQL Databases on Google Cloud Icon
    Managed MySQL, PostgreSQL, and SQL Databases on Google Cloud

    Get back to your application and leave the database to us. Cloud SQL automatically handles backups, replication, and scaling.

    Cloud SQL is a fully managed relational database for MySQL, PostgreSQL, and SQL Server. We handle patching, backups, replication, encryption, and failover—so you can focus on your app. Migrate from on-prem or other clouds with free Database Migration Service. IDC found customers achieved 246% ROI. New customers get $300 in credits plus a 30-day free trial.
    Try Cloud SQL Free
  • Go from Data Warehouse to Data and AI platform with BigQuery Icon
    Go from Data Warehouse to Data and AI platform with BigQuery

    Build, train, and run ML models with simple SQL. Automate data prep, analysis, and predictions with built-in AI assistance from Gemini.

    BigQuery is more than a data warehouse—it's an autonomous data-to-AI platform. Use familiar SQL to train ML models, run time-series forecasts, and generate AI-powered insights with native Gemini integration. Built-in agents handle data engineering and data science workflows automatically. Get $300 in free credit, query 1 TB, and store 10 GB free monthly.
    Try BigQuery Free
  • 1
    Python Machine Learning

    Python Machine Learning

    The "Python Machine Learning (2nd edition)" book code repository

    This repository accompanies the well-known textbook “Python Machine Learning, 2nd Edition” by Sebastian Raschka and Vahid Mirjalili, serving as a complete codebase of examples, notebooks, scripts and supporting materials for the book. It covers a wide range of topics including supervised learning, unsupervised learning, dimensionality reduction, model evaluation, deep learning with TensorFlow, and embedding models into web apps. Each chapter has Jupyter notebooks and Python scripts that...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    ChainerRL

    ChainerRL

    ChainerRL is a deep reinforcement learning library

    ChainerRL (this repository) is a deep reinforcement learning library that implements various state-of-the-art deep reinforcement algorithms in Python using Chainer, a flexible deep learning framework. PFRL is the PyTorch analog of ChainerRL. ChainerRL has a set of accompanying visualization tools in order to aid developers' ability to understand and debug their RL agents. With this visualization tool, the behavior of ChainerRL agents can be easily inspected from a browser UI. Environments...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    BytePS

    BytePS

    A high performance and generic framework for distributed DNN training

    BytePS is a high-performance and generally distributed training framework. It supports TensorFlow, Keras, PyTorch, and MXNet, and can run on either TCP or RDMA networks. BytePS outperforms existing open-sourced distributed training frameworks by a large margin. For example, on BERT-large training, BytePS can achieve ~90% scaling efficiency with 256 GPUs (see below), which is much higher than Horovod+NCCL. In certain scenarios, BytePS can double the training speed compared with Horovod+NCCL....
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    imgaug

    imgaug

    Image augmentation for machine learning experiments

    imgaug is a library for image augmentation in machine learning experiments. It supports a wide range of augmentation techniques, allows to easily combine these and to execute them in random order or on multiple CPU cores, has a simple yet powerful stochastic interface and can not only augment images but also key points/landmarks, bounding boxes, heatmaps and segmentation maps. Affine transformations, perspective transformations, contrast changes, gaussian noise, dropout of regions,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Build AI Apps with Gemini 3 on Vertex AI Icon
    Build AI Apps with Gemini 3 on Vertex AI

    Access Google’s most capable multimodal models. Train, test, and deploy AI with 200+ foundation models on one platform.

    Vertex AI gives developers access to Gemini 3—Google’s most advanced reasoning and coding model—plus 200+ foundation models including Claude, Llama, and Gemma. Build generative AI apps with Vertex AI Studio, customize with fine-tuning, and deploy to production with enterprise-grade MLOps. New customers get $300 in free credits.
    Try Vertex AI Free
  • 5
    CrypTen

    CrypTen

    A framework for Privacy Preserving Machine Learning

    CrypTen is a research framework developed by Facebook Research for privacy-preserving machine learning built directly on top of PyTorch. It provides a secure and intuitive environment for performing computations on encrypted data using Secure Multiparty Computation (SMPC). Designed to make secure computation accessible to machine learning practitioners, CrypTen introduces a CrypTensor object that behaves like a regular PyTorch tensor, allowing users to seamlessly apply automatic...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    textgenrnn

    textgenrnn

    Easily train your own text-generating neural network

    With textgenrnn you can easily train your own text-generating neural network of any size and complexity on any text dataset with a few lines of code. A modern neural network architecture that utilizes new techniques as attention-weighting and skip-embedding to accelerate training and improve model quality. Train on and generate text at either the character-level or word-level. Configure RNN size, the number of RNN layers, and whether to use bidirectional RNNs. Train on any generic input text...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    Spinning Up in Deep RL

    Spinning Up in Deep RL

    Educational resource to help anyone learn deep reinforcement learning

    Welcome to Spinning Up in Deep RL! This is an educational resource produced by OpenAI that makes it easier to learn about deep reinforcement learning (deep RL). For the unfamiliar, reinforcement learning (RL) is a machine learning approach for teaching agents how to solve tasks by trial and error. Deep RL refers to the combination of RL with deep learning. At OpenAI, we believe that deep learning generally, and deep reinforcement learning specifically, will play central roles in the...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    MMSkeleton

    MMSkeleton

    A OpenMMLAB toolbox for human pose estimation, skeleton-based action

    MMSkeleton is an open-source toolbox for skeleton-based human understanding. It is a part of the open-mmlab project in the charge of Multimedia Laboratory, CUHK. MMSkeleton is developed on our research project ST-GCN. MMSkeleton provides a flexible framework for organizing codes and projects systematically, with the ability to extend to various tasks and scale up to complex deep models. MMSkeleton addresses to multiple tasks in human understanding. Build a custom skeleton-based dataset....
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    Image Super-Resolution (ISR)

    Image Super-Resolution (ISR)

    Super-scale your images and run experiments with Residual Dense

    The goal of this project is to upscale and improve the quality of low-resolution images. This project contains Keras implementations of different Residual Dense Networks for Single Image Super-Resolution (ISR) as well as scripts to train these networks using content and adversarial loss components. Docker scripts and Google Colab notebooks are available to carry training and prediction. Also, we provide scripts to facilitate training on the cloud with AWS and Nvidia-docker with only a few...
    Downloads: 8 This Week
    Last Update:
    See Project
  • Easily Host LLMs and Web Apps on Cloud Run Icon
    Easily Host LLMs and Web Apps on Cloud Run

    Run everything from popular models with on-demand NVIDIA L4 GPUs to web apps without infrastructure management.

    Run frontend and backend services, batch jobs, host LLMs, and queue processing workloads without the need to manage infrastructure. Cloud Run gives you on-demand GPU access for hosting LLMs and running real-time AI—with 5-second cold starts and automatic scale-to-zero so you only pay for actual usage. New customers get $300 in free credit to start.
    Try Cloud Run Free
  • 10
    Texar

    Texar

    Toolkit for Machine Learning, Natural Language Processing

    Texar is a toolkit aiming to support a broad set of machine learning, especially natural language processing and text generation tasks. Texar provides a library of easy-to-use ML modules and functionalities for composing whatever models and algorithms. The tool is designed for both researchers and practitioners for fast prototyping and experimentation. Texar was originally developed and is actively contributed by Petuum and CMU in collaboration with other institutes. A mirror of this...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 11
    Deep Learning Drizzle

    Deep Learning Drizzle

    Drench yourself in Deep Learning, Reinforcement Learning

    Drench yourself in Deep Learning, Reinforcement Learning, Machine Learning, Computer Vision, and NLP by learning from these exciting lectures! Optimization courses which form the foundation for ML, DL, RL. Computer Vision courses which are DL & ML heavy. Speech recognition courses which are DL heavy. Structured Courses on Geometric, Graph Neural Networks. Section on Autonomous Vehicles. Section on Computer Graphics with ML/DL focus.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 12
    PyTorch Natural Language Processing

    PyTorch Natural Language Processing

    Basic Utilities for PyTorch Natural Language Processing (NLP)

    PyTorch-NLP is a library for Natural Language Processing (NLP) in Python. It’s built with the very latest research in mind, and was designed from day one to support rapid prototyping. PyTorch-NLP comes with pre-trained embeddings, samplers, dataset loaders, metrics, neural network modules and text encoders. It’s open-source software, released under the BSD3 license. With your batch in hand, you can use PyTorch to develop and train your model using gradient descent.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    Dive-into-DL-TensorFlow2.0

    Dive-into-DL-TensorFlow2.0

    Dive into Deep Learning

    This project changes the MXNet code implementation in the original book "Learning Deep Learning by Hand" to TensorFlow2 implementation. After consulting Mr. Li Mu by the tutor of archersama , the implementation of this project has been agreed by Mr. Li Mu. Original authors: Aston Zhang, Li Mu, Zachary C. Lipton, Alexander J. Smola and other community contributors. There are some differences between the Chinese and English versions of this book . This project mainly focuses on TensorFlow2...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 14
    Torchreid

    Torchreid

    Deep learning person re-identification in PyTorch

    Torchreid is a library for deep-learning person re-identification, written in PyTorch and developed for our ICCV’19 project, Omni-Scale Feature Learning for Person Re-Identification. In "deep-person-reid/scripts/", we provide a unified interface to train and test a model. See "scripts/main.py" and "scripts/default_config.py" for more details. The folder "configs/" contains some predefined configs which you can use as a starting point. The code will automatically (download and) load the...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    Azure Machine Learning Python SDK

    Azure Machine Learning Python SDK

    Python notebooks with ML and deep learning examples

    Azure Machine Learning Python SDK is a curated repository of Python-based Jupyter notebooks that demonstrate how to develop, train, evaluate, and deploy machine learning and deep learning models using the Azure Machine Learning Python SDK. The content spans a wide range of real-world tasks — from foundational quickstarts that teach users how to configure an Azure ML workspace and connect to compute resources, to advanced tutorials on using pipelines, automated machine learning, and dataset...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 16
    MatchZoo

    MatchZoo

    Facilitating the design, comparison and sharing of deep text models

    The goal of MatchZoo is to provide a high-quality codebase for deep text matching research, such as document retrieval, question answering, conversational response ranking, and paraphrase identification. With the unified data processing pipeline, simplified model configuration and automatic hyper-parameters tunning features equipped, MatchZoo is flexible and easy to use. Preprocess your input data in three lines of code, keep track parameters to be passed into the model. Make use of MatchZoo...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    NiftyNet

    NiftyNet

    An open-source convolutional neural networks platform for research

    An open-source convolutional neural networks platform for medical image analysis and image-guided therapy. NiftyNet is a TensorFlow-based open-source convolutional neural networks (CNNs) platform for research in medical image analysis and image-guided therapy. NiftyNet’s modular structure is designed for sharing networks and pre-trained models. Using this modular structure you can get started with established pre-trained networks using built-in tools. Adapt existing networks to your imaging...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    nGraph

    nGraph

    nGraph has moved to OpenVINO

    Frameworks using nGraph Compiler stack to execute workloads have shown up to 45X performance boost when compared to native framework implementations. We've also seen performance boosts running workloads that are not included on the list of Validated workloads, thanks to nGraph's powerful subgraph pattern matching. Additionally, we have integrated nGraph with PlaidML to provide deep learning performance acceleration on Intel, nVidia, & AMD GPUs. nGraph Compiler aims to accelerate developing...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    Spotlight

    Spotlight

    Deep recommender models using PyTorch

    Spotlight uses PyTorch to build both deep and shallow recommender models. By providing both a slew of building blocks for loss functions (various pointwise and pairwise ranking losses), representations (shallow factorization representations, deep sequence models), and utilities for fetching (or generating) recommendation datasets, it aims to be a tool for rapid exploration and prototyping of new recommender models. Spotlight offers a slew of popular datasets, including Movielens 100K, 1M,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    MLBox

    MLBox

    MLBox is a powerful Automated Machine Learning python library

    MLBox is a powerful Automated Machine Learning python library. Fast reading and distributed data preprocessing/cleaning/formatting. Highly robust feature selection and leak detection. Accurate hyper-parameter optimization in high-dimensional space. State-of-the-art predictive models for classification and regression (Deep Learning, Stacking, LightGBM,...) Prediction with model interpretation. MLBox has been developed and used by many active community members. Your help is very valuable to...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    Coach

    Coach

    Enables easy experimentation with state of the art algorithms

    Coach is a python framework that models the interaction between an agent and an environment in a modular way. With Coach, it is possible to model an agent by combining various building blocks, and training the agent on multiple environments. The available environments allow testing the agent in different fields such as robotics, autonomous driving, games and more. It exposes a set of easy-to-use APIs for experimenting with new RL algorithms and allows simple integration of new environments...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    Shogun

    Shogun

    Unified and efficient Machine Learning since 1999

    Shogun is a unified and efficient Machine Learning since 1999. Shogun is implemented in C++ and offers automatically generated, unified interfaces to Python, Octave, Java / Scala, Ruby, C#, R, Lua. We are currently working on adding more languages including JavaScript, D, and Matlab.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    captcha_break

    captcha_break

    Identification codes

    This project will use Keras to build a deep convolutional neural network to identify the captcha verification code. It is recommended to use a graphics card to run the project. The following visualization codes are jupyter notebookall done in . If you want to write a python script, you can run it normally with a little modification. Of course, you can also remove these visualization codes. captcha is a library written in python to generate verification codes. It supports image verification...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    Rainbow

    Rainbow

    Rainbow: Combining Improvements in Deep Reinforcement Learning

    Combining improvements in deep reinforcement learning. Results and pretrained models can be found in the releases. Data-efficient Rainbow can be run using several options (note that the "unbounded" memory is implemented here in practice by manually setting the memory capacity to be the same as the maximum number of timesteps).
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    RoboSat

    RoboSat

    Semantic segmentation on aerial and satellite imagery

    RoboSat is an end-to-end pipeline written in Python 3 for feature extraction from aerial and satellite imagery. Features can be anything visually distinguishable in the imagery for example: buildings, parking lots, roads, or cars.
    Downloads: 1 This Week
    Last Update:
    See Project
MongoDB Logo MongoDB