Showing 606 open source projects for "pam-python"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Automate contact and company data extraction Icon
    Automate contact and company data extraction

    Build lead generation pipelines that pull emails, phone numbers, and company details from directories, maps, social platforms. Full API access.

    Generate leads at scale without building or maintaining scrapers. Use 10,000+ ready-made tools that handle authentication, pagination, and anti-bot protection. Pull data from business directories, social profiles, and public sources, then export to your CRM or database via API. Schedule recurring extractions, enrich existing datasets, and integrate with your workflows.
    Explore Apify Store
  • 1
    mlforecast

    mlforecast

    Scalable machine learning for time series forecasting

    mlforecast is a time-series forecasting framework built around machine-learning models, designed to make forecasting both efficient and scalable. It lets you apply any regressor that follows the typical scikit-learn API, for example, gradient-boosted trees or linear models, to time-series data by automating much of the messy feature engineering and data preparation. Instead of writing custom code to build lagged features, rolling statistics, and date-based predictors, mlforecast generates...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    Lightweight' GAN

    Lightweight' GAN

    Implementation of 'lightweight' GAN, proposed in ICLR 2021

    Implementation of 'lightweight' GAN proposed in ICLR 2021, in Pytorch. The main contribution of the paper is a skip-layer excitation in the generator, paired with autoencoding self-supervised learning in the discriminator. Quoting the one-line summary "converge on single gpu with few hours' training, on 1024 resolution sub-hundred images". Augmentation is essential for Lightweight GAN to work effectively in a low data setting. You can test and see how your images will be augmented before...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    NeuroMatch Academy (NMA)

    NeuroMatch Academy (NMA)

    NMA Computational Neuroscience course

    ...These videos are completely optional and do not need to be watched in a fixed order so you can pick and choose which videos will help you brush up on your knowledge. The pre-reqs refresher days are asynchronous, so you can go through the material on your own time. You will learn how to code in Python from scratch using a simple neural model, the leaky integrate-and-fire model, as a motivation. Then, you will cover linear algebra, calculus and probability & statistics. The topics covered on these days were carefully chosen based on what you need for the comp neuro course.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 4
    cuML

    cuML

    RAPIDS Machine Learning Library

    cuML is a suite of libraries that implement machine learning algorithms and mathematical primitives functions that share compatible APIs with other RAPIDS projects. cuML enables data scientists, researchers, and software engineers to run traditional tabular ML tasks on GPUs without going into the details of CUDA programming. In most cases, cuML's Python API matches the API from scikit-learn. For large datasets, these GPU-based implementations can complete 10-50x faster than their CPU equivalents. For details on performance, see the cuML Benchmarks Notebook.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Incredable is the first DLT-secured platform that allows you to save time, eliminate errors, and ensure your organization is compliant all in one place. Icon
    Incredable is the first DLT-secured platform that allows you to save time, eliminate errors, and ensure your organization is compliant all in one place.

    For healthcare Providers and Facilities

    Incredable streamlines and simplifies the complex process of medical credentialing for hospitals and medical facilities, helping you save valuable time, reduce costs, and minimize risks. With Incredable, you can effortlessly manage all your healthcare providers and their credentials within a single, unified platform. Our state-of-the-art technology ensures top-notch data security, giving you peace of mind.
    Learn More
  • 5
    audioFlux

    audioFlux

    A library for audio and music analysis, feature extraction

    A library for audio and music analysis, and feature extraction. Can be used for deep learning, pattern recognition, signal processing, bioinformatics, statistics, finance, etc. audioflux is a deep learning tool library for audio and music analysis, feature extraction. It supports dozens of time-frequency analysis transformation methods and hundreds of corresponding time-domain and frequency-domain feature combinations. It can be provided to deep learning networks for training and is used to...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    libvips

    libvips

    A fast image processing library with low memory needs

    ...It can also load images via ImageMagick or GraphicsMagick, letting it work with formats like DICOM. It comes with bindings for C, C++, and the command-line. Full bindings are available for Ruby, Python, PHP, C# / .NET, Go, and Lua.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 7
    handson-ml3

    handson-ml3

    Fundamentals of Machine Learning and Deep Learning

    handson-ml3 contains the Jupyter notebooks and code for the third edition of the book Hands-On Machine Learning with Scikit-Learn, Keras & TensorFlow. It guides readers through modern machine learning and deep learning workflows using Python, with examples spanning data preparation, supervised and unsupervised learning, deep neural networks, RL, and production-ready model deployment. The third edition updates the content for TensorFlow 2 and Keras, introduces new chapters (for example on reinforcement learning or generative models), and offers best-practice code that reflects current ecosystems. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 8
    Katib

    Katib

    Automated Machine Learning on Kubernetes

    Katib is a Kubernetes-native project for automated machine learning (AutoML). Katib supports Hyperparameter Tuning, Early Stopping and Neural Architecture Search. Katib is a project that is agnostic to machine learning (ML) frameworks. It can tune hyperparameters of applications written in any language of the users’ choice and natively supports many ML frameworks, such as TensorFlow, Apache MXNet, PyTorch, XGBoost, and others. Katib can perform training jobs using any Kubernetes Custom...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    VisualDL

    VisualDL

    Deep Learning Visualization Toolkit

    VisualDL, a visualization analysis tool of PaddlePaddle, provides a variety of charts to show the trends of parameters and visualizes model structures, data samples, histograms of tensors, PR curves , ROC curves and high-dimensional data distributions. It enables users to understand the training process and the model structure more clearly and intuitively so as to optimize models efficiently. VisualDL provides various visualization functions, including tracking metrics in real-time,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • AI-First Supply Chain Management Icon
    AI-First Supply Chain Management

    Supply chain managers, executives, and businesses seeking AI-powered solutions to optimize planning, operations, and decision-making across the supply

    Logility is a market-leading provider of AI-first supply chain management solutions engineered to help organizations build sustainable digital supply chains that improve people’s lives and the world we live in. The company’s approach is designed to reimagine supply chain planning by shifting away from traditional “what happened” processes to an AI-driven strategy that combines the power of humans and machines to predict and be ready for what’s coming. Logility’s fully integrated, end-to-end platform helps clients know faster, turn uncertainty into opportunity, and transform the supply chain from a cost center to an engine for growth.
    Learn More
  • 10
    OpenMLDB

    OpenMLDB

    OpenMLDB is an open-source machine learning database

    ...Real-time features are essential for many machine learning applications, such as real-time personalized recommendations and risk analytics. However, a feature engineering script developed by data scientists (Python scripts in most cases) cannot be directly deployed into production for online inference because it usually cannot meet the engineering requirements, such as low latency, high throughput and high availability.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    Tribuo

    Tribuo

    Tribuo - A Java machine learning library

    ...It provides a unified interface to many popular third-party ML libraries like xgboost and liblinear. With interfaces to native code, Tribuo also makes it possible to deploy models trained by Python libraries (e.g. scikit-learn, and pytorch) in a Java program. Tribuo is licensed under Apache 2.0. Remove the uncertainty around exactly which artifacts you're using in production. Tribuo's Models, Datasets, and Evaluations have provenance, meaning they know exactly what parameters, transformations, and files were used to create them. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    OneFlow

    OneFlow

    OneFlow is a deep learning framework designed to be user-friendly

    OneFlow is a deep learning framework designed to be user-friendly, scalable and efficient. An extension for OneFlow to target third-party compiler, such as XLA, TensorRT and OpenVINO etc.CUDA runtime is statically linked into OneFlow. OneFlow will work on a minimum supported driver, and any driver beyond. For more information. Distributed performance (efficiency) is the core technical difficulty of the deep learning framework. OneFlow focuses on performance improvement and heterogeneous...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    mlpack

    mlpack

    mlpack: a scalable C++ machine learning library

    ...It is meant to be a machine learning analog to LAPACK, and aims to implement a wide array of machine learning methods and functions as a "swiss army knife" for machine learning researchers. In addition to its powerful C++ interface, mlpack also provides command-line programs, Python bindings, Julia bindings, Go bindings and R bindings. Written in C++ and built on the Armadillo linear algebra library, the ensmallen numerical optimization library, and parts of Boost. Aims to provide fast, extensible implementations of cutting-edge machine learning algorithms. mlpack uses CMake as a build system and allows several flexible build configuration options. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    Smile

    Smile

    Statistical machine intelligence and learning engine

    Smile is a fast and comprehensive machine learning engine. With advanced data structures and algorithms, Smile delivers the state-of-art performance. Compared to this third-party benchmark, Smile outperforms R, Python, Spark, H2O, xgboost significantly. Smile is a couple of times faster than the closest competitor. The memory usage is also very efficient. If we can train advanced machine learning models on a PC, why buy a cluster? Write applications quickly in Java, Scala, or any JVM languages. Data scientists and developers can speak the same language now! ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    Synapse Machine Learning

    Synapse Machine Learning

    Simple and distributed Machine Learning

    SynapseML (previously MMLSpark) is an open source library to simplify the creation of scalable machine learning pipelines. SynapseML builds on Apache Spark and SparkML to enable new kinds of machine learning, analytics, and model deployment workflows. SynapseML adds many deep learning and data science tools to the Spark ecosystem, including seamless integration of Spark Machine Learning pipelines with the Open Neural Network Exchange (ONNX), LightGBM, The Cognitive Services, Vowpal Wabbit,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    Sonnet

    Sonnet

    TensorFlow-based neural network library

    Sonnet is a neural network library built on top of TensorFlow designed to provide simple, composable abstractions for machine learning research. Sonnet can be used to build neural networks for various purposes, including different types of learning. Sonnet’s programming model revolves around a single concept: modules. These modules can hold references to parameters, other modules and methods that apply some function on the user input. There are a number of predefined modules that already...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 17
    SSD in PyTorch 1.0

    SSD in PyTorch 1.0

    High quality, fast, modular reference implementation of SSD in PyTorch

    This repository implements SSD (Single Shot MultiBox Detector). The implementation is heavily influenced by the projects ssd.pytorch, pytorch-ssd and maskrcnn-benchmark. This repository aims to be the code base for research based on SSD. Multi-GPU training and inference: We use DistributedDataParallel, you can train or test with arbitrary GPU(s), the training schema will change accordingly. Add your own modules without pain. We abstract backbone, Detector, BoxHead, BoxPredictor, etc. You can...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    PromptTools

    PromptTools

    Open-source tools for prompt testing and experimentation

    Welcome to prompttools created by Hegel AI! This repo offers a set of open-source, self-hostable tools for experimenting with, testing, and evaluating LLMs, vector databases, and prompts. The core idea is to enable developers to evaluate using familiar interfaces like code, notebooks, and a local playground.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    BackgroundMattingV2

    BackgroundMattingV2

    Real-Time High-Resolution Background Matting

    Official repository for the paper Real-Time High-Resolution Background Matting. Our model requires capturing an additional background image and produces state-of-the-art matting results at 4K 30fps and HD 60fps on an Nvidia RTX 2080 TI GPU.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 20
    MMDeploy

    MMDeploy

    OpenMMLab Model Deployment Framework

    MMDeploy is an open-source deep learning model deployment toolset. It is a part of the OpenMMLab project. Models can be exported and run in several backends, and more will be compatible. All kinds of modules in the SDK can be extended, such as Transform for image processing, Net for Neural Network inference, Module for postprocessing and so on. Install and build your target backend. ONNX Runtime is a cross-platform inference and training accelerator compatible with many popular ML/DNN...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    CLIP-as-service

    CLIP-as-service

    Embed images and sentences into fixed-length vectors

    CLIP-as-service is a low-latency high-scalability service for embedding images and text. It can be easily integrated as a microservice into neural search solutions. Serve CLIP models with TensorRT, ONNX runtime and PyTorch w/o JIT with 800QPS[*]. Non-blocking duplex streaming on requests and responses, designed for large data and long-running tasks. Horizontally scale up and down multiple CLIP models on single GPU, with automatic load balancing. Easy-to-use. No learning curve, minimalist...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    MMEditing

    MMEditing

    MMEditing is a low-level vision toolbox based on PyTorch

    MMEditing is an open-source toolbox for low-level vision. It supports various tasks. MMEditing is a low-level vision toolbox based on PyTorch, supporting super-resolution, inpainting, matting, video interpolation, etc. We decompose the editing framework into different components and one can easily construct a customized editor framework by combining different modules. The toolbox directly supports popular and contemporary inpainting, matting, super-resolution and generation tasks. The...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 23
    TensorFlow Addons

    TensorFlow Addons

    Useful extra functionality for TensorFlow 2.x maintained by SIG-addons

    TensorFlow Addons is a repository of contributions that conform to well-established API patterns but implement new functionality not available in core TensorFlow. TensorFlow natively supports a large number of operators, layers, metrics, losses, and optimizers. However, in a fast-moving field like ML, there are many interesting new developments that cannot be integrated into core TensorFlow (because their broad applicability is not yet clear, or it is mostly used by a smaller subset of the...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 24
    Armadillo

    Armadillo

    fast C++ library for linear algebra & scientific computing

    * Fast C++ library for linear algebra (matrix maths) and scientific computing * Easy to use functions and syntax, deliberately similar to Matlab / Octave * Uses template meta-programming techniques to increase efficiency * Provides user-friendly wrappers for OpenBLAS, Intel MKL, LAPACK, ATLAS, ARPACK, SuperLU and FFTW libraries * Useful for machine learning, pattern recognition, signal processing, bioinformatics, statistics, finance, etc. * Downloads:...
    Leader badge
    Downloads: 2,826 This Week
    Last Update:
    See Project
  • 25
    Datapipe

    Datapipe

    Real-time, incremental ETL library for ML with record-level depend

    Datapipe is a real-time, incremental ETL library for Python with record-level dependency tracking. Datapipe is designed to streamline the creation of data processing pipelines. It excels in scenarios where data is continuously changing, requiring pipelines to adapt and process only the modified data efficiently. This library tracks dependencies for each record in the pipeline, ensuring minimal and efficient data processing.
    Downloads: 1 This Week
    Last Update:
    See Project