Showing 318 open source projects for "apache"

View related business solutions
  • Context for your AI agents Icon
    Context for your AI agents

    Crawl websites, sync to vector databases, and power RAG applications. Pre-built integrations for LLM pipelines and AI assistants.

    Build data pipelines that feed your AI models and agents without managing infrastructure. Crawl any website, transform content, and push directly to your preferred vector store. Use 10,000+ tools for RAG applications, AI assistants, and real-time knowledge bases. Monitor site changes, trigger workflows on new data, and keep your AIs fed with fresh, structured information. Cloud-native, API-first, and free to start until you need to scale.
    Try for free
  • Skillfully - The future of skills based hiring Icon
    Skillfully - The future of skills based hiring

    Realistic Workplace Simulations that Show Applicant Skills in Action

    Skillfully transforms hiring through AI-powered skill simulations that show you how candidates actually perform before you hire them. Our platform helps companies cut through AI-generated resumes and rehearsed interviews by validating real capabilities in action. Through dynamic job specific simulations and skill-based assessments, companies like Bloomberg and McKinsey have cut screening time by 50% while dramatically improving hire quality.
    Learn More
  • 1
    Tensor2Tensor

    Tensor2Tensor

    Library of deep learning models and datasets

    Deep Learning (DL) has enabled the rapid advancement of many useful technologies, such as machine translation, speech recognition and object detection. In the research community, one can find code open-sourced by the authors to help in replicating their results and further advancing deep learning. However, most of these DL systems use unique setups that require significant engineering effort and may only work for a specific problem or architecture, making it hard to run new experiments and...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    TransmogrifAI

    TransmogrifAI

    TransmogrifAI (pronounced trăns-mŏgˈrə-fī) is an AutoML library

    TransmogrifAI (pronounced trăns-mŏgˈrə-fī) is an AutoML library written in Scala that runs on top of Apache Spark. It was developed with a focus on accelerating machine learning developer productivity through machine learning automation, and an API that enforces compile-time type-safety, modularity, and reuse. Through automation, it achieves accuracies close to hand-tuned models with almost 100x reduction in time.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    exchange-core

    exchange-core

    Ultra-fast matching engine written in Java based on LMAX Disruptor

    Exchange-core is an open-source market exchange core based on LMAX Disruptor, Eclipse Collections (ex. Goldman Sachs GS Collections), Real Logic Agrona, OpenHFT Chronicle-Wire, LZ4 Java, and Adaptive Radix Trees. Designed for high scalability and pauseless 24/7 operation under high-load conditions and providing low-latency responses. Single order book configuration is capable to process 5M operations per second on 10-years old hardware (Intel® Xeon® X5690) with moderate latency degradation....
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    ModelDB

    ModelDB

    Open Source ML Model Versioning, Metadata, and Experiment Management

    An open-source system for Machine Learning model versioning, metadata, and experiment management. ModelDB is an open-source system to version machine learning models including their ingredients code, data, config, and environment and to track ML metadata across the model lifecycle.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Automated RMM Tools | RMM Software Icon
    Automated RMM Tools | RMM Software

    Proactively monitor, manage, and support client networks with ConnectWise Automate

    Out-of-the-box scripts. Around-the-clock monitoring. Unmatched automation capabilities. Start doing more with less and exceed service delivery expectations.
    Learn More
  • 5
    SINGA

    SINGA

    A distributed deep learning platform

    Apache SINGA is an Apache Top Level Project, focusing on distributed training of deep learning and machine learning models. Various example deep learning models are provided in SINGA repo on Github and on Google Colab. SINGA supports data parallel training across multiple GPUs (on a single node or across different nodes). SINGA supports various popular optimizers including stochastic gradient descent with momentum, Adam, RMSProp, and AdaGrad, etc.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    Java Neural Network Framework Neuroph
    Neuroph is lightweight Java Neural Network Framework which can be used to develop common neural network architectures. Small number of basic classes which correspond to basic NN concepts, and GUI editor makes it easy to learn and use.
    Leader badge
    Downloads: 63 This Week
    Last Update:
    See Project
  • 7
    BytePS

    BytePS

    A high performance and generic framework for distributed DNN training

    BytePS is a high-performance and generally distributed training framework. It supports TensorFlow, Keras, PyTorch, and MXNet, and can run on either TCP or RDMA networks. BytePS outperforms existing open-sourced distributed training frameworks by a large margin. For example, on BERT-large training, BytePS can achieve ~90% scaling efficiency with 256 GPUs (see below), which is much higher than Horovod+NCCL. In certain scenarios, BytePS can double the training speed compared with Horovod+NCCL....
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    MMSkeleton

    MMSkeleton

    A OpenMMLAB toolbox for human pose estimation, skeleton-based action

    MMSkeleton is an open-source toolbox for skeleton-based human understanding. It is a part of the open-mmlab project in the charge of Multimedia Laboratory, CUHK. MMSkeleton is developed on our research project ST-GCN. MMSkeleton provides a flexible framework for organizing codes and projects systematically, with the ability to extend to various tasks and scale up to complex deep models. MMSkeleton addresses to multiple tasks in human understanding. Build a custom skeleton-based dataset....
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    Manifold ML

    Manifold ML

    A model-agnostic visual debugging tool for machine learning

    Manifold is a model-agnostic visual debugging tool for machine learning. Understanding ML model performance and behavior is a non-trivial process, given the intrisic opacity of ML algorithms. Performance summary statistics such as AUC, RMSE, and others are not instructive enough to identify what went wrong with a model or how to improve it. As a visual analytics tool, Manifold allows ML practitioners to look beyond overall summary metrics to detect which subset of data a model is...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Leverage AI to Automate Medical Coding Icon
    Leverage AI to Automate Medical Coding

    Medical Coding Solution

    As a healthcare provider, you should be paid promptly for the services you provide to patients. Slow, inefficient, and error-prone manual coding keeps you from the financial peace you deserve. XpertDox’s autonomous coding solution accelerates the revenue cycle so you can focus on providing great healthcare.
    Learn More
  • 10
    Image Super-Resolution (ISR)

    Image Super-Resolution (ISR)

    Super-scale your images and run experiments with Residual Dense

    ...This can be controlled by the loss weights argument. The weights used to produce these images are available directly when creating the model object. ISR is compatible with Python 3.6 and is distributed under the Apache 2.0 license.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    Texar

    Texar

    Toolkit for Machine Learning, Natural Language Processing

    Texar is a toolkit aiming to support a broad set of machine learning, especially natural language processing and text generation tasks. Texar provides a library of easy-to-use ML modules and functionalities for composing whatever models and algorithms. The tool is designed for both researchers and practitioners for fast prototyping and experimentation. Texar was originally developed and is actively contributed by Petuum and CMU in collaboration with other institutes. A mirror of this...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    Dive-into-DL-TensorFlow2.0

    Dive-into-DL-TensorFlow2.0

    Dive into Deep Learning

    This project changes the MXNet code implementation in the original book "Learning Deep Learning by Hand" to TensorFlow2 implementation. After consulting Mr. Li Mu by the tutor of archersama , the implementation of this project has been agreed by Mr. Li Mu. Original authors: Aston Zhang, Li Mu, Zachary C. Lipton, Alexander J. Smola and other community contributors. There are some differences between the Chinese and English versions of this book . This project mainly focuses on TensorFlow2...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    nGraph

    nGraph

    nGraph has moved to OpenVINO

    Frameworks using nGraph Compiler stack to execute workloads have shown up to 45X performance boost when compared to native framework implementations. We've also seen performance boosts running workloads that are not included on the list of Validated workloads, thanks to nGraph's powerful subgraph pattern matching. Additionally, we have integrated nGraph with PlaidML to provide deep learning performance acceleration on Intel, nVidia, & AMD GPUs. nGraph Compiler aims to accelerate developing...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 14
    MatchZoo

    MatchZoo

    Facilitating the design, comparison and sharing of deep text models

    The goal of MatchZoo is to provide a high-quality codebase for deep text matching research, such as document retrieval, question answering, conversational response ranking, and paraphrase identification. With the unified data processing pipeline, simplified model configuration and automatic hyper-parameters tunning features equipped, MatchZoo is flexible and easy to use. Preprocess your input data in three lines of code, keep track parameters to be passed into the model. Make use of MatchZoo...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    NiftyNet

    NiftyNet

    An open-source convolutional neural networks platform for research

    An open-source convolutional neural networks platform for medical image analysis and image-guided therapy. NiftyNet is a TensorFlow-based open-source convolutional neural networks (CNNs) platform for research in medical image analysis and image-guided therapy. NiftyNet’s modular structure is designed for sharing networks and pre-trained models. Using this modular structure you can get started with established pre-trained networks using built-in tools. Adapt existing networks to your imaging...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    Docker Machine

    Docker Machine

    Machine management for a container-centric world

    Docker Machine is a tool that lets you install Docker Engine on virtual hosts, and manage the hosts with docker-machine commands. You can use Machine to create Docker hosts on your local Mac or Windows box, on your company network, in your data center, or on cloud providers like Azure, AWS, or DigitalOcean. Using docker-machine commands, you can start, inspect, stop, and restart a managed host, upgrade the Docker client and daemon, and configure a Docker client to talk to your host. Point...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 17
    X-DeepLearning

    X-DeepLearning

    An industrial deep learning framework for high-dimension sparse data

    X-DeepLearning (XDL for short) is a complete set of deep optimization solutions for high-dimensional sparse data scenarios (such as advertising/recommendation/search, etc.). XDL version 1.2 has been released recently. Performance optimization for large batch/low concurrency scenarios, 50-100% performance improvement in such scenarios. Storage and communication optimization, parameters are automatically allocated globally without manual intervention, and requests are merged to completely...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    Coach

    Coach

    Enables easy experimentation with state of the art algorithms

    Coach is a python framework that models the interaction between an agent and an environment in a modular way. With Coach, it is possible to model an agent by combining various building blocks, and training the agent on multiple environments. The available environments allow testing the agent in different fields such as robotics, autonomous driving, games and more. It exposes a set of easy-to-use APIs for experimenting with new RL algorithms and allows simple integration of new environments...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    Facets

    Facets

    Visualizations for machine learning datasets

    The power of machine learning comes from its ability to learn patterns from large amounts of data. Understanding your data is critical to building a powerful machine learning system. Facets contains two robust visualizations to aid in understanding and analyzing machine learning datasets. Get a sense of the shape of each feature of your dataset using Facets Overview, or explore individual observations using Facets Dive. Explore Facets Overview and Facets Dive on the UCI Census Income...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 20
    FID score for PyTorch

    FID score for PyTorch

    Compute FID scores with PyTorch

    This is a port of the official implementation of Fréchet Inception Distance to PyTorch. FID is a measure of similarity between two datasets of images. It was shown to correlate well with human judgement of visual quality and is most often used to evaluate the quality of samples of Generative Adversarial Networks. FID is calculated by computing the Fréchet distance between two Gaussians fitted to feature representations of the Inception network. The weights and the model are exactly the same...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 21
    CakeChat

    CakeChat

    CakeChat: Emotional Generative Dialog System

    CakeChat is a backend for chatbots that are able to express emotions via conversations. The code is flexible and allows to condition model's responses by an arbitrary categorical variable. For example, you can train your own persona-based neural conversational model or create an emotional chatting machine. Hierarchical Recurrent Encoder-Decoder (HRED) architecture for handling deep dialog context. Multilayer RNN with GRU cells. The first layer of the utterance-level encoder is always...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    xLearn

    xLearn

    High performance, easy-to-use, and scalable machine learning (ML)

    xLearn is a high-performance, easy-to-use, and scalable machine learning package that contains linear model (LR), factorization machines (FM), and field-aware factorization machines (FFM), all of which can be used to solve large-scale machine learning problems. xLearn is especially useful for solving machine learning problems on large-scale sparse data. Many real-world datasets deal with high dimensional sparse feature vectors like a recommendation system where the number of categories and...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 23
    TenorSpace.js

    TenorSpace.js

    Neural network 3D visualization framework

    TensorSpace is a neural network 3D visualization framework built using TensorFlow.js, Three.js and Tween.js. TensorSpace provides Keras-like APIs to build deep learning layers, load pre-trained models, and generate a 3D visualization in the browser. From TensorSpace, it is intuitive to learn what the model structure is, how the model is trained and how the model predicts the results based on the intermediate information. After preprocessing the model, TensorSpace supports the visualization...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24

    EBCS for Feature Selection

    Enhanced Binary Cuckoo Search with Frequent Values and RST (EBCS)

    This Filter Feature Selection approach (EBCS) with other tasks developed by PHP Programing language. Initial parameters for EBCS and FS-BCS as follows: Maximum number of iteration is 20. Population size is 20. Probability (P) is 0.25. Alpha is 0.1. After Downloading and copying the EBCS directory to directory root, and request the EBCS/index.php page to show home page which contains the following tasks: 1. The new Approach: EBCS. 2. The baseline approach: FS-BCS. 3....
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    Tensorpack

    Tensorpack

    A Neural Net Training Interface on TensorFlow, with focus on speed

    Tensorpack is a neural network training interface based on TensorFlow v1. Uses TensorFlow in the efficient way with no extra overhead. On common CNNs, it runs training 1.2~5x faster than the equivalent Keras code. Your training can probably gets faster if written with Tensorpack. Scalable data-parallel multi-GPU / distributed training strategy is off-the-shelf to use. Squeeze the best data loading performance of Python with tensorpack.dataflow. Symbolic programming (e.g. tf.data) does not...
    Downloads: 0 This Week
    Last Update:
    See Project