Showing 342 open source projects for "using"

View related business solutions
  • Outgrown Windows Task Scheduler? Icon
    Outgrown Windows Task Scheduler?

    Free diagnostic identifies where your workflow is breaking down—with instant analysis of your scheduling environment.

    Windows Task Scheduler wasn't built for complex, cross-platform automation. Get a free diagnostic that shows exactly where things are failing and provides remediation recommendations. Interactive HTML report delivered in minutes.
    Download Free Tool
  • AI-generated apps that pass security review Icon
    AI-generated apps that pass security review

    Stop waiting on engineering. Build production-ready internal tools with AI—on your company data, in your cloud.

    Retool lets you generate dashboards, admin panels, and workflows directly on your data. Type something like “Build me a revenue dashboard on my Stripe data” and get a working app with security, permissions, and compliance built in from day one. Whether on our cloud or self-hosted, create the internal software your team needs without compromising enterprise standards or control.
    Try Retool free
  • 1
    Coach

    Coach

    Enables easy experimentation with state of the art algorithms

    ...Coach supports many state-of-the-art reinforcement learning algorithms, which are separated into three main classes - value optimization, policy optimization, and imitation learning. Coach supports a large number of environments which can be solved using reinforcement learning.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    Facets

    Facets

    Visualizations for machine learning datasets

    ...Facets contains two robust visualizations to aid in understanding and analyzing machine learning datasets. Get a sense of the shape of each feature of your dataset using Facets Overview, or explore individual observations using Facets Dive. Explore Facets Overview and Facets Dive on the UCI Census Income dataset, used for predicting whether an individual’s income exceeds $50K/yr based on their census data. The census data contains features such as age, education level, and occupation for each individual. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 3
    Rainbow

    Rainbow

    Rainbow: Combining Improvements in Deep Reinforcement Learning

    Combining improvements in deep reinforcement learning. Results and pretrained models can be found in the releases. Data-efficient Rainbow can be run using several options (note that the "unbounded" memory is implemented here in practice by manually setting the memory capacity to be the same as the maximum number of timesteps).
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    captcha_break

    captcha_break

    Identification codes

    This project will use Keras to build a deep convolutional neural network to identify the captcha verification code. It is recommended to use a graphics card to run the project. The following visualization codes are jupyter notebookall done in . If you want to write a python script, you can run it normally with a little modification. Of course, you can also remove these visualization codes. captcha is a library written in python to generate verification codes. It supports image verification...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Atera all-in-one platform IT management software with AI agents Icon
    Atera all-in-one platform IT management software with AI agents

    Ideal for internal IT departments or managed service providers (MSPs)

    Atera’s AI agents don’t just assist, they act. From detection to resolution, they handle incidents and requests instantly, taking your IT management from automated to autonomous.
    Learn More
  • 5
    ChainerCV

    ChainerCV

    ChainerCV: a Library for Deep Learning in Computer Vision

    ChainerCV is a collection of tools to train and run neural networks for computer vision tasks using Chainer. In ChainerCV, we define the object detection task as a problem of, given an image, bounding box-based localization and categorization of objects. Bounding boxes in an image are represented as a two-dimensional array of shape (R,4), where R is the number of bounding boxes and the second axis corresponds to the coordinates of bounding boxes.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    FID score for PyTorch

    FID score for PyTorch

    Compute FID scores with PyTorch

    ...The weights and the model are exactly the same as in the official Tensorflow implementation, and were tested to give very similar results (e.g. .08 absolute error and 0.0009 relative error on LSUN, using ProGAN generated images). However, due to differences in the image interpolation implementation and library backends, FID results still differ slightly from the original implementation. In difference to the official implementation, you can choose to use a different feature layer of the Inception network instead of the default pool3 layer.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 7
    CakeChat

    CakeChat

    CakeChat: Emotional Generative Dialog System

    ...Thought vector is fed into decoder on each decoding step. Decoder can be conditioned on any categorical label, for example, emotion label or persona id. May be initialized using w2v model trained on your corpus. Embedding layer may be either fixed or fine-tuned along with other weights of the network.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    xLearn

    xLearn

    High performance, easy-to-use, and scalable machine learning (ML)

    xLearn is a high-performance, easy-to-use, and scalable machine learning package that contains linear model (LR), factorization machines (FM), and field-aware factorization machines (FFM), all of which can be used to solve large-scale machine learning problems. xLearn is especially useful for solving machine learning problems on large-scale sparse data. Many real-world datasets deal with high dimensional sparse feature vectors like a recommendation system where the number of categories and...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 9
    MIT Deep Learning Book

    MIT Deep Learning Book

    MIT Deep Learning Book in PDF format by Ian Goodfellow

    ...So, I have taken the prints of the HTML content and bound them into a flawless PDF version of the book, as suggested by the website itself. Printing seems to work best printing directly from the browser, using Chrome. Other browsers do not work as well.
    Downloads: 16 This Week
    Last Update:
    See Project
  • Grafana: The open and composable observability platform Icon
    Grafana: The open and composable observability platform

    Faster answers, predictable costs, and no lock-in built by the team helping to make observability accessible to anyone.

    Grafana is the open source analytics & monitoring solution for every database.
    Learn More
  • 10
    TenorSpace.js

    TenorSpace.js

    Neural network 3D visualization framework

    TensorSpace is a neural network 3D visualization framework built using TensorFlow.js, Three.js and Tween.js. TensorSpace provides Keras-like APIs to build deep learning layers, load pre-trained models, and generate a 3D visualization in the browser. From TensorSpace, it is intuitive to learn what the model structure is, how the model is trained and how the model predicts the results based on the intermediate information.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 11
    Fuzzy Ecospace Modelling

    Fuzzy Ecospace Modelling

    FEM allows users to create fuzzy functional groups for use in ecology.

    Fuzzy Ecospace Modelling (FEM) is an R-based program for quantifying and comparing functional disparity, using a fuzzy set theory-based machine learning approach. FEM clusters n-dimensional matrices of functional traits (ecospace matrices – here called the Training Matrix) into functional groups and converts them into fuzzy functional groups using fuzzy discriminant analysis (Lin and Chen 2004 – see main text for more information). Following this, FEM classifies the functional entities from a second matrix (the Test Matrix) into the groups made using the Training Matrix, generating fuzzy membership values for each unit in the Test Matrix. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    NeuralCoref

    NeuralCoref

    Fast Coreference Resolution in spaCy with Neural Networks

    NeuralCoref is a pipeline extension for spaCy 2.1+ which annotates and resolves coreference clusters using a neural network. NeuralCoref is production-ready, integrated in spaCy's NLP pipeline and extensible to new training datasets. For a brief introduction to coreference resolution and NeuralCoref, please refer to our blog post. NeuralCoref is written in Python/Cython and comes with a pre-trained statistical model for English only.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 13
    easy12306

    easy12306

    Automatic recognition of 12306 verification code

    Automatic recognition of 12306 verification code using machine learning algorithm. Identify never-before-seen pictures.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    automl-gs

    automl-gs

    Provide an input CSV and a target field to predict, generate a model

    Give an input CSV file and a target field you want to predict to automl-gs, and get a trained high-performing machine learning or deep learning model plus native Python code pipelines allowing you to integrate that model into any prediction workflow. No black box: you can see exactly how the data is processed, and how the model is constructed, and you can make tweaks as necessary. automl-gs is an AutoML tool which, unlike Microsoft's NNI, Uber's Ludwig, and TPOT, offers a zero code/model...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    NeuroNER

    NeuroNER

    Named-entity recognition using neural networks

    Named-entity recognition (NER) aims at identifying entities of interest in the text, such as location, organization and temporal expression. Identified entities can be used in various downstream applications such as patient note de-identification and information extraction systems. They can also be used as features for machine learning systems for other natural language processing tasks. Leverages the state-of-the-art prediction capabilities of neural networks (a.k.a. "deep learning") Is...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    Easy-TensorFlow

    Easy-TensorFlow

    Simple and comprehensive tutorials in TensorFlow

    ...In addition to the aforementioned points, the large community of TensorFlow enriches the developers with the answer to almost all the questions one may encounter. Furthermore, since most of the developers are using TensorFlow for code development, having hands-on on TensorFlow is a necessity these days. Tensorboard is a powerful visualization suite that is developed to track both the network topology and performance, making debugging even simpler.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    NN-SVG

    NN-SVG

    Publication-ready NN-architecture schematics

    ...The tool provides the ability to generate figures of three kinds: classic Fully-Connected Neural Network (FCNN) figures, Convolutional Neural Network (CNN) figures of the sort introduced in the LeNet paper, and Deep Neural Network figures following the style introduced in the AlexNet paper. The former two are accomplished using the D3 javascript library and the latter with the javascript library Three.js. NN-SVG provides the ability to style the figure to the user's liking via many size, color, and layout parameters.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 18
    brainCL_chung
    brainCL chung is a small program with dll to compute 3 to 4 layers neural networks with bulk training learn input data to bulk output data using openCL (cpu or gpu) acceleration written in easy fast freebasic
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    Oryx

    Oryx

    Lambda architecture on Apache Spark, Apache Kafka for real-time

    ...It is a framework for building applications but also includes packaged, end-to-end applications for collaborative filtering, classification, regression and clustering. The application is written in Java, using Apache Spark, Hadoop, Tomcat, Kafka, Zookeeper and more. Configuration uses a single Typesafe Config config file, wherein applications configure an entire deployment of the system. This includes implementations of key interface classes which implement the batch, speed, and serving logic. Applications package and deploy their implementations with each instance of the layer binaries. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    Pragmatic AI

    Pragmatic AI

    [Book-2019] Pragmatic AI: An Introduction to Cloud-based ML

    ...Writing for business professionals, decision-makers, and students who aren’t professional data scientists, Noah Gift demystifies all the tools and technologies you need to get results. He illuminates powerful off-the-shelf cloud-based solutions from Google, Amazon, and Microsoft, as well as accessible techniques using Python and R. Throughout, you’ll find simple, clear, and effective working solutions that show how to apply machine learning, AI and cloud computing together in virtually any organization, creating solutions that deliver results, and offer virtually unlimited scalability.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21

    CRP - Chemical Reaction Prediction

    Predicting Organic Reactions using Neural Networks.

    The intend is to solve the forward-reaction prediction problem, where the reactants are known and the interest is in generating the reaction products using Deep learning. This Graphical User Interface takes simplified molecular-input line-entry system (SMILES) as an input and generates the product SMILE & molecule. Beam search is used in Version 2, to generate top 5 predictions. Maximum input length for the model is 15 (excluding spaces).
    Downloads: 2 This Week
    Last Update:
    See Project
  • 22
    Bender

    Bender

    Easily craft fast Neural Networks on iOS

    Bender allows you to easily define and run neural networks on your iOS apps, it uses Apple’s MetalPerformanceShaders under the hood. Bender provides the ease of use of CoreML with the flexibility of a modern ML framework. Bender allows you to run trained models, you can use Tensorflow, Keras, Caffe, the choice is yours. Either freeze the graph or export the weights to files. You can import a frozen graph directly from supported platforms or re-define the network structure and load the...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23

    AerinSistemas-Noname

    Elasticsearch to Pandas dataframe or CSV

    API and command line utility, written in Python, for querying Elasticsearch exporting result as documents into a CSV file. The search can be done using logical operators or ranges, in combination or alone. The output can be limited to the desired attributes. Also ToT can insert the querying to a Pandas Dataframe or/and save its in a HDF5 container (under development).
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    DIGITS

    DIGITS

    Deep Learning GPU training system

    The NVIDIA Deep Learning GPU Training System (DIGITS) puts the power of deep learning into the hands of engineers and data scientists. DIGITS can be used to rapidly train the highly accurate deep neural network (DNNs) for image classification, segmentation and object detection tasks. DIGITS simplifies common deep learning tasks such as managing data, designing and training neural networks on multi-GPU systems, monitoring performance in real-time with advanced visualizations, and selecting...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    DeepLearn

    DeepLearn

    Implementation of research papers on Deep Learning+ NLP+ CV in Python

    Welcome to DeepLearn. This repository contains an implementation of the following research papers on NLP, CV, ML, and deep learning. The required dependencies are mentioned in requirement.txt. I will also use dl-text modules for preparing the datasets. If you haven't use it, please do have a quick look at it. CV, transfer learning, representation learning.
    Downloads: 0 This Week
    Last Update:
    See Project