With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.
You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
Try free now
Automate contact and company data extraction
Build lead generation pipelines that pull emails, phone numbers, and company details from directories, maps, social platforms. Full API access.
Generate leads at scale without building or maintaining scrapers. Use 10,000+ ready-made tools that handle authentication, pagination, and anti-bot protection. Pull data from business directories, social profiles, and public sources, then export to your CRM or database via API. Schedule recurring extractions, enrich existing datasets, and integrate with your workflows.
OpenFace is a Python and Torch implementation of face recognition with deep neural networks and is based on the CVPR 2015 paper FaceNet: A Unified Embedding for Face Recognition and Clustering by Florian Schroff, Dmitry Kalenichenko, and James Philbin at Google. Torch allows the network to be executed on a CPU or with CUDA. This research was supported by the National Science Foundation (NSF) under grant number CNS-1518865.
...This innovation lets the model learn domain-to-domain translations like turning horses into zebras, changing seasons, or transforming photos into paintings, using only collections of images from each domain. The original implementation (in Torch) has since been complemented by other re-implementations (including in PyTorch), but the core idea remains: unpaired image-to-image translation. Because of its flexibility, CycleGAN has become one of the most widely adopted generative models for domain translation tasks.
...The design is modular and homogeneous, making it relatively easy to scale (by tuning cardinality, width, depth) and adopt in existing residual frameworks. The official repository offers a Torch (Lua) implementation with code for training, evaluation, and pretrained models on ImageNet. In practice, ResNeXt models often outperform standard ResNet models of comparable complexity.
A Torch implementation of the object detection network
MultiPathNet is a Torch-7 implementation of the “A MultiPath Network for Object Detection” paper (BMVC 2016), developed by Facebook AI Research. It extends the Fast R-CNN framework by introducing multiple network “paths” to enhance feature extraction and object recognition robustness. The MultiPath architecture incorporates skip connections and multi-scale processing to capture both fine-grained details and high-level context within a single detection pipeline.
OrangeHRM provides a world-class HRIS experience and offers everything you and your team need to be that HR hero you know that you are.
Give your HR team the tools they need to streamline administrative tasks, support employees, and make informed decisions with the OrangeHRM free and open source HR software.
...A companion refinement model (SharpMask) sharpens the coarse predictions, recovering fine boundaries like thin limbs or object edges. The repository (in the original Torch/Lua stack) includes pretrained weights, training scripts, and evaluation utilities.