Showing 103 open source projects for "python::module"

View related business solutions
  • Cloud-based help desk software with ServoDesk Icon
    Cloud-based help desk software with ServoDesk

    Full access to Enterprise features. No credit card required.

    What if You Could Automate 90% of Your Repetitive Tasks in Under 30 Days? At ServoDesk, we help businesses like yours automate operations with AI, allowing you to cut service times in half and increase productivity by 25% - without hiring more staff.
    Try ServoDesk for free
  • Build Securely on Azure with Proven Frameworks Icon
    Build Securely on Azure with Proven Frameworks

    Lay a foundation for success with Tested Reference Architectures developed by Fortinet’s experts. Learn more in this white paper.

    Moving to the cloud brings new challenges. How can you manage a larger attack surface while ensuring great network performance? Turn to Fortinet’s Tested Reference Architectures, blueprints for designing and securing cloud environments built by cybersecurity experts. Learn more and explore use cases in this white paper.
    Download Now
  • 1
    SAHI

    SAHI

    A lightweight vision library for performing large object detection

    A lightweight vision library for performing large-scale object detection & instance segmentation. Object detection and instance segmentation are by far the most important fields of applications in Computer Vision. However, detection of small objects and inference on large images are still major issues in practical usage. Here comes the SAHI to help developers overcome these real-world problems with many vision utilities. Detection of small objects and objects far away in the scene is a major...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    Pandas Profiling

    Pandas Profiling

    Create HTML profiling reports from pandas DataFrame objects

    pandas-profiling generates profile reports from a pandas DataFrame. The pandas df.describe() function is handy yet a little basic for exploratory data analysis. pandas-profiling extends pandas DataFrame with df.profile_report(), which automatically generates a standardized univariate and multivariate report for data understanding. High correlation warnings, based on different correlation metrics (Spearman, Pearson, Kendall, Cramér’s V, Phik). Most common categories (uppercase, lowercase,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    SageMaker Hugging Face Inference Toolkit

    SageMaker Hugging Face Inference Toolkit

    Library for serving Transformers models on Amazon SageMaker

    SageMaker Hugging Face Inference Toolkit is an open-source library for serving Transformers models on Amazon SageMaker. This library provides default pre-processing, predict and postprocessing for certain Transformers models and tasks. It utilizes the SageMaker Inference Toolkit for starting up the model server, which is responsible for handling inference requests. For the Dockerfiles used for building SageMaker Hugging Face Containers, see AWS Deep Learning Containers. The SageMaker Hugging...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    UForm

    UForm

    Multi-Modal Neural Networks for Semantic Search, based on Mid-Fusion

    UForm is a Multi-Modal Modal Inference package, designed to encode Multi-Lingual Texts, Images, and, soon, Audio, Video, and Documents, into a shared vector space! It comes with a set of homonymous pre-trained networks available on HuggingFace portal and extends the transfromers package to support Mid-fusion Models. Late-fusion models encode each modality independently, but into one shared vector space. Due to independent encoding late-fusion models are good at capturing coarse-grained...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Shoplogix Smart Factory Platform Icon
    Shoplogix Smart Factory Platform

    For manufacturers looking for a powerful Manufacturing Execution solution

    Real-time Visibility into Your Shop Floor's Performance. The Shoplogix smart factory platform enables manufacturers to increase overall equipment effectiveness, reduce operational costs, sustain growth and improve profitability by allowing them to visualize, integrate and act on production and machine performance in real-time. Manufacturers that trust us to drive efficiency in their factories. Real-time visual data and analytics provide valuable insights to make better informed decisions. Uncover hidden shop floor potential and drive rapid time to value. Develop a continuously improving culture through training, education and data-driven decisions. Compete in the i4.0 world by making the Shoplogix Smart Factory Platform the cornerstone of your digital transformation. Connect to any equipment or device to automate data collection and exchange it with other manufacturing technologies. Automatically monitor, report and analyze machine states to track real-time production.
    Learn More
  • 5
    marqo

    marqo

    Tensor search for humans

    A tensor-based search and analytics engine that seamlessly integrates with your applications, websites, and workflows. Marqo is a versatile and robust search and analytics engine that can be integrated into any website or application. Due to horizontal scalability, Marqo provides lightning-fast query times, even with millions of documents. Marqo helps you configure deep-learning models like CLIP to pull semantic meaning from images. It can seamlessly handle image-to-image, image-to-text and...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    AWS Neuron

    AWS Neuron

    Powering Amazon custom machine learning chips

    AWS Neuron is a software development kit (SDK) for running machine learning inference using AWS Inferentia chips. It consists of a compiler, run-time, and profiling tools that enable developers to run high-performance and low latency inference using AWS Inferentia-based Amazon EC2 Inf1 instances. Using Neuron developers can easily train their machine learning models on any popular framework such as TensorFlow, PyTorch, and MXNet, and run it optimally on Amazon EC2 Inf1 instances. You can...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    OpenMLDB

    OpenMLDB

    OpenMLDB is an open-source machine learning database

    ...Real-time features are essential for many machine learning applications, such as real-time personalized recommendations and risk analytics. However, a feature engineering script developed by data scientists (Python scripts in most cases) cannot be directly deployed into production for online inference because it usually cannot meet the engineering requirements, such as low latency, high throughput and high availability.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    DALI

    DALI

    A GPU-accelerated library containing highly optimized building blocks

    The NVIDIA Data Loading Library (DALI) is a library for data loading and pre-processing to accelerate deep learning applications. It provides a collection of highly optimized building blocks for loading and processing image, video and audio data. It can be used as a portable drop-in replacement for built-in data loaders and data iterators in popular deep learning frameworks. Deep learning applications require complex, multi-stage data processing pipelines that include loading, decoding,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    spaGO

    spaGO

    Self-contained Machine Learning and Natural Language Processing lib

    ...Spago is self-contained, in that it uses its own lightweight computational graph both for training and inference, easy to understand from start to finish. The core module of Spago relies only on testify for unit testing. In other words, it has "zero dependencies", and we are committed to keeping it that way as much as possible. Spago uses a multi-module workspace to ensure that additional dependencies are downloaded only when specific features (e.g. persistent embeddings) are used. A good place to start is by looking at the implementation of built-in neural models, such as the LSTM. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Autonomous Data Quality Validation with DataBuck Icon
    Autonomous Data Quality Validation with DataBuck

    Eliminate unexpected data issues

    DataBuck is an automated data monitoring and validation software that autonomously validates 1,000’s of data sets in a few clicks, with lower data maintenance work & costs.
    Learn More
  • 10
    SageMaker Inference Toolkit

    SageMaker Inference Toolkit

    Serve machine learning models within a Docker container

    Serve machine learning models within a Docker container using Amazon SageMaker. Amazon SageMaker is a fully managed service for data science and machine learning (ML) workflows. You can use Amazon SageMaker to simplify the process of building, training, and deploying ML models. Once you have a trained model, you can include it in a Docker container that runs your inference code. A container provides an effectively isolated environment, ensuring a consistent runtime regardless of where the...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    LLMFlows

    LLMFlows

    LLMFlows - Simple, Explicit and Transparent LLM Apps

    LLMFlows is a framework for building simple, explicit, and transparent applications utilizing Large Language Models (LLMs). It emphasizes clarity and control in the development process, allowing developers to create LLM-powered applications with well-defined workflows and interactions. LLMFlows supports various LLMs and provides tools to manage prompts, responses, and application logic effectively.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    llama2-webui

    llama2-webui

    Run any Llama 2 locally with gradio UI on GPU or CPU from anywhere

    Running Llama 2 with gradio web UI on GPU or CPU from anywhere (Linux/Windows/Mac).
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    Medusa

    Medusa

    Framework for Accelerating LLM Generation with Multiple Decoding Heads

    Medusa is a framework aimed at accelerating the generation capabilities of Large Language Models (LLMs) by employing multiple decoding heads. This approach allows for parallel processing during text generation, significantly enhancing throughput and reducing response times. Medusa is designed to be simple to implement and integrates with existing LLM infrastructures, making it a practical solution for scaling LLM applications.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    ollama_manager_gui

    ollama_manager_gui

    A graphical manager for ollama that can manage your LLMs

    This app will help install ollama and LLMs using the gui provided by this app. It checks for ollama when launched and if it doesn't exist it will help by bringing you to the ollama site for download. This app is heavily upgraded and now also works properly on Linux. It now has progress bars and many many many improvements. It can launch the LLM by clicking the link. it can launch multiple LLMs in separate windows. It can also remove an installed LLM. There is a confirmation...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 15
    Petals

    Petals

    Run 100B+ language models at home, BitTorrent-style

    Run 100B+ language models at home, BitTorrent‑style. Run large language models like BLOOM-176B collaboratively — you load a small part of the model, then team up with people serving the other parts to run inference or fine-tuning. Single-batch inference runs at ≈ 1 sec per step (token) — up to 10x faster than offloading, enough for chatbots and other interactive apps. Parallel inference reaches hundreds of tokens/sec. Beyond classic language model APIs — you can employ any fine-tuning and...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    OpenFieldAI - AI Open Field Test Tracker

    OpenFieldAI - AI Open Field Test Tracker

    OpenFieldAI is an AI based Open Field Test Rodent Tracker

    OpenFieldAI use AI-CNN to track rodents movement with pretrained OFAI models , or user could create their own model with YOLOv8 for inferencing. The software generates Centroid graph, Heat map and Line path and a spreadsheet containing all calculated parameters like - Speed - Time in and out of ROI - Distance - Entries/Exits for single/multiple pre-recorded videos or live webcam video. The ROI is assigned automatically in multiple video input , and can be manually given in single...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    pipeless

    pipeless

    A computer vision framework to create and deploy apps in minutes

    Pipeless is an open-source computer vision framework to create and deploy applications without the complexity of building and maintaining multimedia pipelines. It ships everything you need to create and deploy efficient computer vision applications that work in real-time in just minutes. Pipeless is inspired by modern serverless technologies. It provides the development experience of serverless frameworks applied to computer vision. You provide some functions that are executed for new...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 18
    Repo of Tree of Thoughts (ToT)

    Repo of Tree of Thoughts (ToT)

    Implementation of "Tree of Thoughts

    Language models are increasingly being deployed for general problem-solving across a wide range of tasks, but are still confined to token-level, left-to-right decision-making processes during inference. This means they can fall short in tasks that require exploration, strategic lookahead, or where initial decisions play a pivotal role. To surmount these challenges, we introduce a new framework for language model inference, Tree of Thoughts (ToT), which generalizes over the popular Chain of...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    Lightning Bolts

    Lightning Bolts

    Toolbox of models, callbacks, and datasets for AI/ML researchers

    Bolts package provides a variety of components to extend PyTorch Lightning, such as callbacks & datasets, for applied research and production. Torch ORT converts your model into an optimized ONNX graph, speeding up training & inference when using NVIDIA or AMD GPUs. We can introduce sparsity during fine-tuning with SparseML, which ultimately allows us to leverage the DeepSparse engine to see performance improvements at inference time.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    NanoDet-Plus

    NanoDet-Plus

    Lightweight anchor-free object detection model

    ...NanoDet is a FCOS-style one-stage anchor-free object detection model which using Generalized Focal Loss as classification and regression loss. In NanoDet-Plus, we propose a novel label assignment strategy with a simple assign guidance module (AGM) and a dynamic soft label assigner (DSLA) to solve the optimal label assignment problem in lightweight model training. We also introduce a light feature pyramid called Ghost-PAN to enhance multi-layer feature fusion. These improvements boost previous NanoDet's detection accuracy by 7 mAP on COCO dataset. NanoDet provide multi-backend C++ demo including ncnn, OpenVINO and MNN. ...
    Downloads: 10 This Week
    Last Update:
    See Project
  • 21
    GPT-NeoX

    GPT-NeoX

    Implementation of model parallel autoregressive transformers on GPUs

    This repository records EleutherAI's library for training large-scale language models on GPUs. Our current framework is based on NVIDIA's Megatron Language Model and has been augmented with techniques from DeepSpeed as well as some novel optimizations. We aim to make this repo a centralized and accessible place to gather techniques for training large-scale autoregressive language models, and accelerate research into large-scale training. For those looking for a TPU-centric codebase, we...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 22
    Sockeye

    Sockeye

    Sequence-to-sequence framework, focused on Neural Machine Translation

    Sockeye is an open-source sequence-to-sequence framework for Neural Machine Translation built on PyTorch. It implements distributed training and optimized inference for state-of-the-art models, powering Amazon Translate and other MT applications. For a quickstart guide to training a standard NMT model on any size of data, see the WMT 2014 English-German tutorial. If you are interested in collaborating or have any questions, please submit a pull request or issue. You can also send questions...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    MMTracking

    MMTracking

    OpenMMLab Video Perception Toolbox

    MMTracking is an open-source video perception toolbox by PyTorch. It is a part of OpenMMLab project. We are the first open-source toolbox that unifies versatile video perception tasks include video object detection, multiple object tracking, single object tracking and video instance segmentation. We decompose the video perception framework into different components and one can easily construct a customized method by combining different modules. MMTracking interacts with other OpenMMLab...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    AI Chatbots based on GPT Architecture

    AI Chatbots based on GPT Architecture

    Training & Implementation of chatbots leveraging GPT-like architecture

    Training & Implementation of chatbots leveraging GPT-like architecture with the aitextgen package to enable dynamic conversations. It sure seems like there are a lot of text-generation chatbots out there, but it's hard to find a python package or model that is easy to tune around a simple text file of message data. This repo is a simple attempt to help solve that problem. ai-msgbot covers the practical use case of building a chatbot that sounds like you (or some dataset/persona you choose) by training a text-generation model to generate conversation in a consistent structure. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    Hello AI World

    Hello AI World

    Guide to deploying deep-learning inference networks

    ...The tutorial focuses on networks related to computer vision, and includes the use of live cameras. You’ll also get to code your own easy-to-follow recognition program in Python or C++, and train your own DNN models onboard Jetson with PyTorch. Ready to dive into deep learning? It only takes two days. We’ll provide you with all the tools you need, including easy to follow guides, software samples such as TensorRT code, and even pre-trained network models including ImageNet and DetectNet examples. Follow these directions to integrate deep learning into your platform of choice and quickly develop a proof-of-concept design.
    Downloads: 1 This Week
    Last Update:
    See Project