Showing 10 open source projects for "parallel"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Resco toolkit for building mobile apps Icon
    Resco toolkit for building mobile apps

    A no-code toolkit for building responsive and resilient mobile business applications for Microsoft Power Platform, Dynamics 365, Dataverse and Salesfo

    Deploying mobile apps with Resco takes days, not months—all without writing a single line of code. Workers can download the Resco app from AppStore, Google Play, or Windows Store, log into your company environment, and instantly use the app you have published on any device.
    Learn More
  • 1
    vLLM

    vLLM

    A high-throughput and memory-efficient inference and serving engine

    vLLM is a fast and easy-to-use library for LLM inference and serving. High-throughput serving with various decoding algorithms, including parallel sampling, beam search, and more.
    Downloads: 27 This Week
    Last Update:
    See Project
  • 2
    ncnn

    ncnn

    High-performance neural network inference framework for mobile

    ncnn is a high-performance neural network inference computing framework designed specifically for mobile platforms. It brings artificial intelligence right at your fingertips with no third-party dependencies, and speeds faster than all other known open source frameworks for mobile phone cpu. ncnn allows developers to easily deploy deep learning algorithm models to the mobile platform and create intelligent APPs. It is cross-platform and supports most commonly used CNN networks, including...
    Downloads: 32 This Week
    Last Update:
    See Project
  • 3
    PaddlePaddle

    PaddlePaddle

    PArallel Distributed Deep LEarning: Machine Learning Framework

    PaddlePaddle is an open source deep learning industrial platform with advanced technologies and a rich set of features that make innovation and application of deep learning easier. It is the only independent R&D deep learning platform in China, and has been widely adopted in various sectors including manufacturing, agriculture and enterprise service. PaddlePaddle covers core deep learning frameworks, basic model libraries, end-to-end development kits and more, with support for both...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 4
    Llama Recipes

    Llama Recipes

    Scripts for fine-tuning Meta Llama3 with composable FSDP & PEFT method

    The 'llama-recipes' repository is a companion to the Meta Llama models. We support the latest version, Llama 3.1, in this repository. The goal is to provide a scalable library for fine-tuning Meta Llama models, along with some example scripts and notebooks to quickly get started with using the models in a variety of use-cases, including fine-tuning for domain adaptation and building LLM-based applications with Llama and other tools in the LLM ecosystem. The examples here showcase how to run...
    Downloads: 1 This Week
    Last Update:
    See Project
  • Go beyond a virtual data room with Datasite Diligence Icon
    Go beyond a virtual data room with Datasite Diligence

    Datasite Diligence, helps dealmakers in more than 170 countries close more deals, faster.

    The data room with a view. Evolved for next-generation M&A. Built on decades of deal experience. Packed with expert tools, yet intuitive for novices. A fully mobile platform with frictionless processes. Smart AI tools that let you close more deals, faster, plus end-to-end support at all times. Do due diligence with intelligence.
    Learn More
  • 5
    CTranslate2

    CTranslate2

    Fast inference engine for Transformer models

    CTranslate2 is a C++ and Python library for efficient inference with Transformer models. The project implements a custom runtime that applies many performance optimization techniques such as weights quantization, layers fusion, batch reordering, etc., to accelerate and reduce the memory usage of Transformer models on CPU and GPU. The execution is significantly faster and requires less resources than general-purpose deep learning frameworks on supported models and tasks thanks to many...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 6
    TorchRec

    TorchRec

    Pytorch domain library for recommendation systems

    ...Parallelism primitives that enable easy authoring of large, performant multi-device/multi-node models using hybrid data-parallelism/model-parallelism. The TorchRec sharder can shard embedding tables with different sharding strategies including data-parallel, table-wise, row-wise, table-wise-row-wise, and column-wise sharding. The TorchRec planner can automatically generate optimized sharding plans for models. Pipelined training overlaps dataloading device transfer (copy to GPU), inter-device communications (input_dist), and computation (forward, backward) for increased performance. ...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 7
    Ray

    Ray

    A unified framework for scalable computing

    Modern workloads like deep learning and hyperparameter tuning are compute-intensive and require distributed or parallel execution. Ray makes it effortless to parallelize single machine code — go from a single CPU to multi-core, multi-GPU or multi-node with minimal code changes. Accelerate your PyTorch and Tensorflow workload with a more resource-efficient and flexible distributed execution framework powered by Ray. Accelerate your hyperparameter search workloads with Ray Tune. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    Medusa

    Medusa

    Framework for Accelerating LLM Generation with Multiple Decoding Heads

    Medusa is a framework aimed at accelerating the generation capabilities of Large Language Models (LLMs) by employing multiple decoding heads. This approach allows for parallel processing during text generation, significantly enhancing throughput and reducing response times. Medusa is designed to be simple to implement and integrates with existing LLM infrastructures, making it a practical solution for scaling LLM applications.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    Petals

    Petals

    Run 100B+ language models at home, BitTorrent-style

    ...Run large language models like BLOOM-176B collaboratively — you load a small part of the model, then team up with people serving the other parts to run inference or fine-tuning. Single-batch inference runs at ≈ 1 sec per step (token) — up to 10x faster than offloading, enough for chatbots and other interactive apps. Parallel inference reaches hundreds of tokens/sec. Beyond classic language model APIs — you can employ any fine-tuning and sampling methods, execute custom paths through the model, or see its hidden states. You get the comforts of an API with the flexibility of PyTorch. You can also host BLOOMZ, a version of BLOOM fine-tuned to follow human instructions in the zero-shot regime — just replace bloom-petals with bloomz-petals. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • SpamTitan Email Security and Protection Icon
    SpamTitan Email Security and Protection

    SpamTitan blocks spam, viruses, malware, ransomware, phishing attempts and other email threats.

    Blocks phishing, spam emails, malware, viruses, ransomware and malicious email threats. Provides advanced yet easy to use email spam filtering. Perfect for businesses, schools and managed service providers.
    Learn More
  • 10
    GPT-NeoX

    GPT-NeoX

    Implementation of model parallel autoregressive transformers on GPUs

    This repository records EleutherAI's library for training large-scale language models on GPUs. Our current framework is based on NVIDIA's Megatron Language Model and has been augmented with techniques from DeepSpeed as well as some novel optimizations. We aim to make this repo a centralized and accessible place to gather techniques for training large-scale autoregressive language models, and accelerate research into large-scale training. For those looking for a TPU-centric codebase, we...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next